Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of interlayer exchange coupling interaction on topological phase of a bilayer honeycomb Heisenberg ferromagnet

Shi Hong-Chao Tang Bing Liu Chao-Fei

Citation:

Effect of interlayer exchange coupling interaction on topological phase of a bilayer honeycomb Heisenberg ferromagnet

Shi Hong-Chao, Tang Bing, Liu Chao-Fei
PDF
HTML
Get Citation
  • Layered magnetic topological materials are material systems that exhibit both magnetic ordering and topological properties in their smallest two-dimensional units. Studying these systems may lead to the observation of new physical properties and phenomena, which has attracted considerable attention from researchers. The effect of interlayer exchange coupling interactions on bilayer honeycomb Heisenberg ferromagnets with interlayer coupled topological phase is investigated by using linear spin wave theory. The influence of introducing two additional types of interactions, i.e. interlayer exchange coupling interaction and interlayer easy-axis anisotropy interaction, on the topological phase transition are also explored in this work. By calculating the magnon dispersion relations at various interlayer exchange coupling interaction intensities, it is found that the band gaps of high energy band and low energy band both close and reopen at the Dirac points when the system reaches the critical value of interlayer exchange coupling interaction. In magnon systems, such physical phenomena typically relate to topological phase transitions. When calculating the Berry curvature and Chern numbers for the bands in the aforementioned process, it is found that the sign of the Berry curvature reverses and the Chern numbers change when the critical value of interlayer exchange coupling interaction strength is reached, confirming that a topological phase transition occurs indeed. Introducing two other types of interlayer exchange coupling interactions in this process can lead various novel topological phases to occur in the system. The enhancement of interlayer easy-axis anisotropy interactions is likely to impede the topological phase transitions occurring in the system. We find that a major distinction between bilayer honeycomb ferromagnets and their single-layer counterparts lies in the fact that during a topological phase transition, the sign of the magnon thermal Hall coefficient does not change; on the contrary, abrupt shift in the thermal Hall coefficient curve occurs which can be seen as an indicator of topological phase transition of bilayer honeycomb ferromagnets, and is also reflected in the change in magnon Nernst coefficient. The research results of this work can provide theoretical support for developing novel spintronic devices with enhanced information transmission capabilities by using bilayer honeycomb ferromagnetic materials, and can also provide theoretical reference for studing other bilayer ferromagnetic systems.
      Corresponding author: Tang Bing, bingtangphy@jsu.edu.cn ; Liu Chao-Fei, liuchaofei@jxust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064011, 12375014, 11875149), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 23A0404) and the School-level Graduate Scientific Research Project Foundation of Jishou University, China (Grant No. Jdy23052).
    [1]

    Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398Google Scholar

    [2]

    Liu Z R, Hua C B, Peng T, Chen R, Zhou B 2023 Phys. Rev. B 107 125302Google Scholar

    [3]

    张志东 2015 物理学报 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

    [4]

    Xu M L, Huang C X, Li Y W, Liu S Y, Zhong X, Jena P, Kan E J, Wang Y C 2020 Phys. Rev. Lett. 124 067602Google Scholar

    [5]

    MacDonald A H 2019 Physics 12 12Google Scholar

    [6]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Herrero P J 2018 Nature 556 43Google Scholar

    [7]

    Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122 106405Google Scholar

    [8]

    Carr S, Fang S, Jarillo-Herrero P, Kaxiras E 2018 Phys. Rev. B 98 085144Google Scholar

    [9]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [10]

    Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J, Dean C R 2018 Science 361 690Google Scholar

    [11]

    Guerci D, Simon P, Mora C 2021 Phys. Rev. B 103 224436Google Scholar

    [12]

    Feng H F, Li Y, Shi Y G, Xie H Y, Li Y Q, Xu Y 2022 Chin. Phys. Lett. 39 077501Google Scholar

    [13]

    Cenker J, Huang B, Suri N, Thijssen P, Miller A, Song T, Taniguchi T, Watanabe K 2021 Nat. Phys. 17 20Google Scholar

    [14]

    Kang S, Kim K, Kim B H, Kim J, Sim K I, Lee J U, Lee S, Park K, Yun S, Kim T, Nag A, Walters A, Garcia-Fernandez M, Li J, Chapon L, Zhou K J, Son Y W, Kim J H, Cheong H, Park J G 2020 Nature 583 785Google Scholar

    [15]

    Zhang H, Feng X, Heitmann T, Kolesnikov A I, Stone M B, Lu Y M 2020 Phys. Rev. B 101 100405Google Scholar

    [16]

    Zhang L C, Zhu F, Go D, Lux F R, dos Santos F J, Lounis S, Su Y, Blügel S, Mokrousov Y 2021 Phys. Rev. B 103 134414Google Scholar

    [17]

    Ghader D, Khater A 2019 Sci. Rep. 9 15220Google Scholar

    [18]

    Van Miert G, Smith C M 2016 Phys. Rev. B 93 035401Google Scholar

    [19]

    Wang X S, Wang X R 2021 J. Appl. Phys. 129 151101Google Scholar

    [20]

    王振宇, 李志雄, 袁怀洋, 张知之, 曹云姗, 严鹏 2023 物理学报 72 057503Google Scholar

    Wang Z Y, Li Z X, Yuan H Y, Zhang Z Z, Cao Y S, Yan P 2023 Acta Phys. Sin. 72 057503Google Scholar

    [21]

    Stauber T, Low T, Gómez-Santos G 2018 Phys. Rev. Lett. 120 046801Google Scholar

    [22]

    Ma J J, Wang Z Y, Xu S G, Gao Y X, Zhang Y Y, Dai Q, Lin X, Du S X, Ren J D, Gao H J 2022 Chin. Phys. Lett. 39 047403Google Scholar

    [23]

    Hu J W, Zhu S Y, Hu Q Y, Wang Y H, Shen C M, Yang H T, Zhu X S, Huan Q, Xu Y, Gao H J 2024 Chin. Phys. Lett. 41 037401Google Scholar

    [24]

    Li X F, Sun R X, Wang S Y, Li X, Liu Z B, Tian J G 2022 Chin. Phys. Lett. 39 037301Google Scholar

    [25]

    Liu C F, Wang J 2022 Chin. Phys. Lett. 39 077301Google Scholar

    [26]

    Lee J Y 2019 Nat. Commun. 10 5333Google Scholar

    [27]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [28]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [29]

    Hao Z, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Ashvin Vishwanath, Kim P 2021 Science 371 1133Google Scholar

    [30]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A 2020 Nature 588 610Google Scholar

    [31]

    Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158Google Scholar

    [32]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [33]

    Zhu X C, Guo H M, Feng S P 2021 Chin. Phys. B 30 077505Google Scholar

    [34]

    Ghader D 2020 Sci. Rep. 10 16733Google Scholar

    [35]

    Zyuzin V A, Kovalev A 2016 Phys. Rev. Lett. 117 217203Google Scholar

    [36]

    Huang H, Kariyado T, Hu X 2022 Sci. Rep 12 6257Google Scholar

    [37]

    Zhai X, Blanter Y M 2020 Phys. Rev. B 102 075407Google Scholar

    [38]

    Ghader D 2022 Physica E 135 114984Google Scholar

    [39]

    Kim H, Kim S K 2022 Phys. Rev. B 106 104430Google Scholar

    [40]

    Katsura H, Nagaosa N, Lee P A 2010 Phys. Rev. Lett. 104 066403Google Scholar

    [41]

    Matsumoto R, Murakami S 2011 Phys. Rev. B 84 184406Google Scholar

    [42]

    Owerre S A 2016 J. Appl. Phys. 120 043903Google Scholar

    [43]

    Zhang X T, Gao Y H, Chen G 2024 Phys. Rep. 1070 1Google Scholar

    [44]

    Lu Y S, Li J L, Wu C T 2021 Phys. Rev. Lett. 127 217202Google Scholar

    [45]

    Saito T, Misaki K, Ishizuka H, Nagaosa N 2019 Phys. Rev. Lett. 123 255901Google Scholar

    [46]

    Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S, Nagaosa N, Tokura Y 2012 Phys. Rev. B 85 134411Google Scholar

    [47]

    Xu H, Cheng S F, Bao S, Wen J S 2022 Progress in Physics 42 159Google Scholar

    [48]

    Hirschberger M, Chisnell R, Lee Y S, Ong N P 2015 Phys. Rev. Lett. 115 106603Google Scholar

    [49]

    Chisnell R, Helton J S, Freedman D E, Singh D K, Demmel F, Stock C, Nocera D G, Lee Y S 2016 Phys. Rev. B 93 214403Google Scholar

    [50]

    McClarty P A, Dong X Y, Gohlke M, Rau J G, Pollmann F, Moessner R, Penc K 2018 Phys. Rev. B 98 060404Google Scholar

    [51]

    Rückriegel A, Brataas A, Duine R A 2018 Phys. Rev. B 97 081106Google Scholar

    [52]

    Mkhitaryan V V, Ke L 2021 Phys. Rev. B 104 064435Google Scholar

    [53]

    Wang S Y, Wang Y, Yan S H, Wang C, Xiang B K, Liang K Y, He Q S, Watanabe K, Taniguchi T, Tian S J, Lei H C, Ji W, Qi Y, Wang Y H 2022 Sci. Bull. 67 2557Google Scholar

    [54]

    Diaz S A, Klinovaja J, Loss D 2019 Phys. Rev. Lett. 122 187203Google Scholar

    [55]

    McClarty P A 2022 Annu. Rev. Conde. Ma. P 13 171Google Scholar

    [56]

    Liu J, Wang L, Shen K 2023 Phys. Rev. B 107 174404Google Scholar

    [57]

    Mook A, Plekhanov K, Klinovaja J, Loss D 2021 Phys. Rev. X 11 021061Google Scholar

    [58]

    Pirmoradian F, Rameshti B Z, Miri M F, Saeidian S 2018 Phys. Rev. B 98 224409Google Scholar

    [59]

    Chen L 2019 Chin. Phys. B 28 078503Google Scholar

    [60]

    Zhu H, Shi H C, Tang Z, Tang B 2023 Eur. Phys. J. Plus 138 1Google Scholar

    [61]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [62]

    Corticelli A, Moessner R, McClarty P A 2022 Phys. Rev. B 105 064430Google Scholar

    [63]

    Zhang L, Ren J, Wang J S, Li B 2013 Phys. Rev. B 87 144101Google Scholar

    [64]

    Choe D H, Sung H J, Chang K J 2016 Phys. Rev. B 93 125109Google Scholar

    [65]

    Rufo S, Lopes N, Continentino M A, Griffith M A R 2019 Phys. Rev. B 100 195432Google Scholar

    [66]

    Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C X, Duan W H, He K, Xue Q K, Ma X C, Wang Y Y 2013 Science 339 1582Google Scholar

    [67]

    孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇 2018 物理学报 67 131202Google Scholar

    Meng K K, Zhao X P, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Acta Phys. Sin. 67 131202Google Scholar

    [68]

    Mook A, Henk J, Mertig I 2014 Phys. Rev. B 90 024412Google Scholar

    [69]

    Joshi D G 2018 Phys. Rev. B 98 060405Google Scholar

    [70]

    Asano K, Hotta C 2011 Phys. Rev. B 83 245125Google Scholar

    [71]

    Fransson J, Black-Schaffer A M, Balatsky A V 2016 Phys. Rev. B 94 075401Google Scholar

    [72]

    Pershoguba S S, Banerjee S, Lashley J C, Park J, Agren H, Aeppli G, Balatsky A V 2018 Phys. Rev. X 8 011010Google Scholar

    [73]

    Wang D, Bo X Y, Tang F, Wan X G 2019 Phys. Rev. B 99 035160Google Scholar

    [74]

    Sun H, Bhowmick D, Yang B, Sengupta P 2023 Phys. Rev. B 107 134426Google Scholar

    [75]

    Do S H, Paddison J A M, Sala G, Williams T J, Kaneko K, Kuwahara K, May A F, Yan J, McGuire M A, Stone M B, Lumsden M D, Christianson A D 2022 Phys. Rev. B 106 L060408Google Scholar

    [76]

    刘畅, 王亚愚 2023 物理学报 72 177301Google Scholar

    Liu C, Wang Y Y 2023 Acta Phys. Sin. 72 177301Google Scholar

    [77]

    孙慧敏, 何庆林 2021 物理学报 70 127302Google Scholar

    Sun H M, He Q L 2021 Acta Phys. Sin. 70 127302Google Scholar

    [78]

    Xu C Q, Zhang H D, Carnahan C, Zhang P P, Xiao D, Ke X L 2024 Phys. Rev. B 109 094415Google Scholar

    [79]

    Zhang E Z, Chern L E, Kim Y B 2021 Phys. Rev. B 103 174402Google Scholar

    [80]

    强晓斌, 卢海舟 2021 物理学报 70 027201Google Scholar

    Qiang X B, Lu H Z 2021 Acta Phys. Sin. 70 027201Google Scholar

    [81]

    Kovalev A A, Zyuzin V 2016 Phys. Rev. B 93 161106Google Scholar

    [82]

    Bose A, Tulapurkar A A 2019 J. Magn. Magn. Mater. 491 165526Google Scholar

    [83]

    Go G, Kim S K 2022 Phys. Rev. B 106 125103Google Scholar

    [84]

    Cui Q R, Zeng B W, Cui P, Yu T, Yang H X 2023 Phys. Rev. B 108 L180401Google Scholar

    [85]

    Hu C, Zhang D, Yan F G, Li Y C, Lü Q S, Zhu W K, Wei Z K, Chang K M, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [86]

    Soriano D, Cardoso C, Fernández-Rossier J 2019 Solid State Commun. 299 113662Google Scholar

    [87]

    金哲珺雨, 曾钊卓, 曹云姗, 严鹏 2024 物理学报 73 017501Google Scholar

    Jin Z J Y, Zeng Z Z, Cao Y S, Yan P 2024 Acta Phys. Sin. 73 017501Google Scholar

    [88]

    刘恩克 2024 物理学报 73 017103Google Scholar

    Liu E K 2024 Acta Phys. Sin. 73 017103Google Scholar

    [89]

    王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 物理学报 69 117501Google Scholar

    Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501Google Scholar

  • 图 1  双层蜂窝状铁磁体晶格结构 (a)侧视图; (b)俯视图; (c)晶格矢量, 最近邻矢量$ {{\boldsymbol{\delta }}_n} $和次近邻矢量$ {{\boldsymbol{\varsigma }}_n} $分别用红色和蓝色箭头表示; (d) 第一布里渊区高对称路径$ { M} {\text{-}} { K}' {\text{-}} \varGamma {\text{-}} { K} {\text{-}} { M} $

    Figure 1.  Lattice structure of the bilayer honeycomb ferromagnet: (a) Side view; (b) top view; (c) the lattice vector, the nearest and next-nearest neighbor vectors, $ {{\boldsymbol{\delta }}_n} $ and $ {{\boldsymbol{\varsigma }}_n} $, are represented by red and blue arrows, respectively; (d) the high symmetric path $ { M} {\text{-}} { K}' {\text{-}} \varGamma {\text{-}} { K} {\text{-}} { M} $ in the first Brillouin zone.

    图 2  双层蜂窝状铁磁体能带结构 (a) $ {J_0} = 0.1 $; (b) $ {J_0} = 0.245 $; (c) $ {J_0} = 0.3 $; (d) $ {J_0} = 0.505 $; (e) $ {J_0} = 0.9 $, 其余参数设置为$ \varGamma '{=}0.1 $, $ {J_1} = {J_2} = 0 $; (f) 带隙图

    Figure 2.  Magnon band structures of the bilayer honeycomb ferromagnet: (a) $ {J_0} = 0.1 $; (b) $ {J_0} = 0.245 $; (c) $ {J_0} = 0.3 $; (d) $ {J_0} = $$ 0.505 $; (e) $ {J_0} = 0.9 $, the other parameters are set to $ \varGamma ' = 0.1 $, $ {J_1} = {J_2} = 0 $; (f) gaps as a function of $ {J_0} $.

    图 3  双层蜂窝状铁磁体最低能带对应的贝里曲率 (a) $ {J_0} = 0.2 $; (b) $ {J_0} = 0.5 $; (c) $ {J_0} = 0.51 $; (d) $ {J_0} = 0.8 $. 双层蜂窝状铁磁体最高能带对应的贝里曲率 (e) $ {J_0} = 0.15 $; (f) $ {J_0} = 0.24 $; (g) $ {J_0} = 0.25 $; (h) $ {J_0} = 0.8 $, 其余参数设置为$ \varGamma '{=}0.1 $, $ {J_1} = {J_2} = 0 $

    Figure 3.  Berry curvature of the lowest band in a bilayer honeycomb ferromagnet: (a) $ {J_0} = 0.2 $; (b) $ {J_0} = 0.5 $; (c) $ {J_0} = 0.51 $; (d) $ {J_0} = 0.8 $. Berry curvature of the highest band in a bilayer honeycomb ferromagnet: (e) $ {J_0} = 0.15 $; (f) $ {J_0} = 0.24 $; (g) $ {J_0} = $$ 0.25 $; (h) $ {J_0} = 0.8 $. Other parameters are set to $ \varGamma '{=}0.1 $ and $ {J_1} = {J_2} = 0 $.

    图 4  不同层间易轴各向异性相互作用强度下的陈数随$ {J_0} $强度变化曲线 (a)最低能带; (b)最高能带, 其余参数设置为$ \varGamma ' = 0.1, {J_1} = {J_2} = 0 $

    Figure 4.  Chern number as a function of the intensity of interlayer exchange coupling interaction $ {J_0} $ for the different intensity of interlayer easy-axis anisotropy interaction: (a) The lowest band; (b) the highest band, the other parameters are set to $ \varGamma ' = 0.1, $$ {J_1} = {J_2} = 0 $.

    图 5  陈数随层间交换耦合相互作用J0J1强度变化图 (a)—(d)分别对应能量从高到低的4条能带, 其余参数设置为$ \varGamma ' = 0.1 $

    Figure 5.  Chern number as a function of the intensity of the interlayer exchange coupling interaction $ {J_0} $ and $ {J_1} $: (a)–(d) Correspond to four energy bands from high to low energy, the other parameters are set to $ \varGamma ' =0.1 $.

    图 6  陈数随层间交换耦合相互作用J0D强度变化图 (a)—(d)分别对应能量从高到低的4条能带, 其余参数设置为$ \varGamma ' = 0.1 $

    Figure 6.  Chern number as a function of the intensity of the interlayer exchange coupling interaction $ {J_0} $ and $ D $: (a)–(d) Correspond to four energy bands from high to low energy, the other parameters are set to $ \varGamma ' = 0.1 $.

    图 7  (a) 不同$ {J_0} $强度下的磁子热霍尔系数随温度变化曲线, 其他参数设置为$ \varGamma '{=}0.1, \;{J_1} = {J_2} = 0 $; (b) 磁子热霍尔系数随$ {J_0} $强度变化曲线

    Figure 7.  (a) Thermal Hall conductivity as a function of temperature under different intensity of interlayer exchange coupling interaction $ {J_0} $ with $ \varGamma '{=}0.1, \;{J_1} = {J_2} = 0 $; (b) thermal Hall conductivity as a function of different intensities of interlayer exchange coupling interaction $ {J_0} $.

    图 8  (a) 不同$ {J_0} $强度下的磁子能斯特系数随温度变化曲线, 其他参数设置为$ \varGamma '{=}0.1, \;{J_1} = {J_2} = 0 $; (b) 磁子能斯特系数随$ {J_0} $强度变化曲线

    Figure 8.  (a) Magnon Nernst conductivity as a function of temperature under different intensity of interlayer exchange coupling interaction $ {J_0} $ with $ \varGamma '{=}0.1, \;{J_1} = {J_2} = 0 $; (b) magnon Nernst conductivity as a function of different intensities of interlayer exchange coupling interaction $ {J_0} $.

    表 1  色散曲线对应的陈数

    Table 1.  Corresponding Chern numbers of magnon band structures.

    参数陈数
    能带1能带2能带3能带4
    $ {J_0} = 0.1, \;\varGamma '{=}0.1, \;{J_1} = 0.1, \;{J_2} = {J_3} = 0 $–2020
    $ {J_0} = 0.245, \;\varGamma '{=}0.1, \;{J_1} = 0.1, \;{J_2} = {J_3} = 0 $0–220
    $ {J_0} = 0.3, \;\varGamma '{=}0.1, \;{J_1} = 0.1, \;{J_2} = {J_3} = 0 $0–220
    $ {J_0} = 0.505, \;\varGamma '{=}0.1, \;{J_1} = 0.1, \;{J_2} = {J_3} = 0 $0–202
    $ {J_0} = 0.9, \;\varGamma '{=}0.1, \;{J_1} = 0.1, \;{J_2} = {J_3} = 0 $0–202
    DownLoad: CSV

    表 2  能带对应的陈数

    Table 2.  Corresponding Chern numbers of magnon band structures.

    序号 陈数
    能带1 能带2 能带3 能带4
    0 –2 0 2
    0 –2 2 0
    1 –3 2 0
    –1 –1 2 0
    –3 1 2 0
    –2 0 2 0
    –2 2 0 0
    –1 1 0 0
    –1 0 1 0
    DownLoad: CSV
  • [1]

    Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398Google Scholar

    [2]

    Liu Z R, Hua C B, Peng T, Chen R, Zhou B 2023 Phys. Rev. B 107 125302Google Scholar

    [3]

    张志东 2015 物理学报 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

    [4]

    Xu M L, Huang C X, Li Y W, Liu S Y, Zhong X, Jena P, Kan E J, Wang Y C 2020 Phys. Rev. Lett. 124 067602Google Scholar

    [5]

    MacDonald A H 2019 Physics 12 12Google Scholar

    [6]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Herrero P J 2018 Nature 556 43Google Scholar

    [7]

    Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122 106405Google Scholar

    [8]

    Carr S, Fang S, Jarillo-Herrero P, Kaxiras E 2018 Phys. Rev. B 98 085144Google Scholar

    [9]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [10]

    Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J, Dean C R 2018 Science 361 690Google Scholar

    [11]

    Guerci D, Simon P, Mora C 2021 Phys. Rev. B 103 224436Google Scholar

    [12]

    Feng H F, Li Y, Shi Y G, Xie H Y, Li Y Q, Xu Y 2022 Chin. Phys. Lett. 39 077501Google Scholar

    [13]

    Cenker J, Huang B, Suri N, Thijssen P, Miller A, Song T, Taniguchi T, Watanabe K 2021 Nat. Phys. 17 20Google Scholar

    [14]

    Kang S, Kim K, Kim B H, Kim J, Sim K I, Lee J U, Lee S, Park K, Yun S, Kim T, Nag A, Walters A, Garcia-Fernandez M, Li J, Chapon L, Zhou K J, Son Y W, Kim J H, Cheong H, Park J G 2020 Nature 583 785Google Scholar

    [15]

    Zhang H, Feng X, Heitmann T, Kolesnikov A I, Stone M B, Lu Y M 2020 Phys. Rev. B 101 100405Google Scholar

    [16]

    Zhang L C, Zhu F, Go D, Lux F R, dos Santos F J, Lounis S, Su Y, Blügel S, Mokrousov Y 2021 Phys. Rev. B 103 134414Google Scholar

    [17]

    Ghader D, Khater A 2019 Sci. Rep. 9 15220Google Scholar

    [18]

    Van Miert G, Smith C M 2016 Phys. Rev. B 93 035401Google Scholar

    [19]

    Wang X S, Wang X R 2021 J. Appl. Phys. 129 151101Google Scholar

    [20]

    王振宇, 李志雄, 袁怀洋, 张知之, 曹云姗, 严鹏 2023 物理学报 72 057503Google Scholar

    Wang Z Y, Li Z X, Yuan H Y, Zhang Z Z, Cao Y S, Yan P 2023 Acta Phys. Sin. 72 057503Google Scholar

    [21]

    Stauber T, Low T, Gómez-Santos G 2018 Phys. Rev. Lett. 120 046801Google Scholar

    [22]

    Ma J J, Wang Z Y, Xu S G, Gao Y X, Zhang Y Y, Dai Q, Lin X, Du S X, Ren J D, Gao H J 2022 Chin. Phys. Lett. 39 047403Google Scholar

    [23]

    Hu J W, Zhu S Y, Hu Q Y, Wang Y H, Shen C M, Yang H T, Zhu X S, Huan Q, Xu Y, Gao H J 2024 Chin. Phys. Lett. 41 037401Google Scholar

    [24]

    Li X F, Sun R X, Wang S Y, Li X, Liu Z B, Tian J G 2022 Chin. Phys. Lett. 39 037301Google Scholar

    [25]

    Liu C F, Wang J 2022 Chin. Phys. Lett. 39 077301Google Scholar

    [26]

    Lee J Y 2019 Nat. Commun. 10 5333Google Scholar

    [27]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [28]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [29]

    Hao Z, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Ashvin Vishwanath, Kim P 2021 Science 371 1133Google Scholar

    [30]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A 2020 Nature 588 610Google Scholar

    [31]

    Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158Google Scholar

    [32]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [33]

    Zhu X C, Guo H M, Feng S P 2021 Chin. Phys. B 30 077505Google Scholar

    [34]

    Ghader D 2020 Sci. Rep. 10 16733Google Scholar

    [35]

    Zyuzin V A, Kovalev A 2016 Phys. Rev. Lett. 117 217203Google Scholar

    [36]

    Huang H, Kariyado T, Hu X 2022 Sci. Rep 12 6257Google Scholar

    [37]

    Zhai X, Blanter Y M 2020 Phys. Rev. B 102 075407Google Scholar

    [38]

    Ghader D 2022 Physica E 135 114984Google Scholar

    [39]

    Kim H, Kim S K 2022 Phys. Rev. B 106 104430Google Scholar

    [40]

    Katsura H, Nagaosa N, Lee P A 2010 Phys. Rev. Lett. 104 066403Google Scholar

    [41]

    Matsumoto R, Murakami S 2011 Phys. Rev. B 84 184406Google Scholar

    [42]

    Owerre S A 2016 J. Appl. Phys. 120 043903Google Scholar

    [43]

    Zhang X T, Gao Y H, Chen G 2024 Phys. Rep. 1070 1Google Scholar

    [44]

    Lu Y S, Li J L, Wu C T 2021 Phys. Rev. Lett. 127 217202Google Scholar

    [45]

    Saito T, Misaki K, Ishizuka H, Nagaosa N 2019 Phys. Rev. Lett. 123 255901Google Scholar

    [46]

    Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S, Nagaosa N, Tokura Y 2012 Phys. Rev. B 85 134411Google Scholar

    [47]

    Xu H, Cheng S F, Bao S, Wen J S 2022 Progress in Physics 42 159Google Scholar

    [48]

    Hirschberger M, Chisnell R, Lee Y S, Ong N P 2015 Phys. Rev. Lett. 115 106603Google Scholar

    [49]

    Chisnell R, Helton J S, Freedman D E, Singh D K, Demmel F, Stock C, Nocera D G, Lee Y S 2016 Phys. Rev. B 93 214403Google Scholar

    [50]

    McClarty P A, Dong X Y, Gohlke M, Rau J G, Pollmann F, Moessner R, Penc K 2018 Phys. Rev. B 98 060404Google Scholar

    [51]

    Rückriegel A, Brataas A, Duine R A 2018 Phys. Rev. B 97 081106Google Scholar

    [52]

    Mkhitaryan V V, Ke L 2021 Phys. Rev. B 104 064435Google Scholar

    [53]

    Wang S Y, Wang Y, Yan S H, Wang C, Xiang B K, Liang K Y, He Q S, Watanabe K, Taniguchi T, Tian S J, Lei H C, Ji W, Qi Y, Wang Y H 2022 Sci. Bull. 67 2557Google Scholar

    [54]

    Diaz S A, Klinovaja J, Loss D 2019 Phys. Rev. Lett. 122 187203Google Scholar

    [55]

    McClarty P A 2022 Annu. Rev. Conde. Ma. P 13 171Google Scholar

    [56]

    Liu J, Wang L, Shen K 2023 Phys. Rev. B 107 174404Google Scholar

    [57]

    Mook A, Plekhanov K, Klinovaja J, Loss D 2021 Phys. Rev. X 11 021061Google Scholar

    [58]

    Pirmoradian F, Rameshti B Z, Miri M F, Saeidian S 2018 Phys. Rev. B 98 224409Google Scholar

    [59]

    Chen L 2019 Chin. Phys. B 28 078503Google Scholar

    [60]

    Zhu H, Shi H C, Tang Z, Tang B 2023 Eur. Phys. J. Plus 138 1Google Scholar

    [61]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [62]

    Corticelli A, Moessner R, McClarty P A 2022 Phys. Rev. B 105 064430Google Scholar

    [63]

    Zhang L, Ren J, Wang J S, Li B 2013 Phys. Rev. B 87 144101Google Scholar

    [64]

    Choe D H, Sung H J, Chang K J 2016 Phys. Rev. B 93 125109Google Scholar

    [65]

    Rufo S, Lopes N, Continentino M A, Griffith M A R 2019 Phys. Rev. B 100 195432Google Scholar

    [66]

    Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C X, Duan W H, He K, Xue Q K, Ma X C, Wang Y Y 2013 Science 339 1582Google Scholar

    [67]

    孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇 2018 物理学报 67 131202Google Scholar

    Meng K K, Zhao X P, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Acta Phys. Sin. 67 131202Google Scholar

    [68]

    Mook A, Henk J, Mertig I 2014 Phys. Rev. B 90 024412Google Scholar

    [69]

    Joshi D G 2018 Phys. Rev. B 98 060405Google Scholar

    [70]

    Asano K, Hotta C 2011 Phys. Rev. B 83 245125Google Scholar

    [71]

    Fransson J, Black-Schaffer A M, Balatsky A V 2016 Phys. Rev. B 94 075401Google Scholar

    [72]

    Pershoguba S S, Banerjee S, Lashley J C, Park J, Agren H, Aeppli G, Balatsky A V 2018 Phys. Rev. X 8 011010Google Scholar

    [73]

    Wang D, Bo X Y, Tang F, Wan X G 2019 Phys. Rev. B 99 035160Google Scholar

    [74]

    Sun H, Bhowmick D, Yang B, Sengupta P 2023 Phys. Rev. B 107 134426Google Scholar

    [75]

    Do S H, Paddison J A M, Sala G, Williams T J, Kaneko K, Kuwahara K, May A F, Yan J, McGuire M A, Stone M B, Lumsden M D, Christianson A D 2022 Phys. Rev. B 106 L060408Google Scholar

    [76]

    刘畅, 王亚愚 2023 物理学报 72 177301Google Scholar

    Liu C, Wang Y Y 2023 Acta Phys. Sin. 72 177301Google Scholar

    [77]

    孙慧敏, 何庆林 2021 物理学报 70 127302Google Scholar

    Sun H M, He Q L 2021 Acta Phys. Sin. 70 127302Google Scholar

    [78]

    Xu C Q, Zhang H D, Carnahan C, Zhang P P, Xiao D, Ke X L 2024 Phys. Rev. B 109 094415Google Scholar

    [79]

    Zhang E Z, Chern L E, Kim Y B 2021 Phys. Rev. B 103 174402Google Scholar

    [80]

    强晓斌, 卢海舟 2021 物理学报 70 027201Google Scholar

    Qiang X B, Lu H Z 2021 Acta Phys. Sin. 70 027201Google Scholar

    [81]

    Kovalev A A, Zyuzin V 2016 Phys. Rev. B 93 161106Google Scholar

    [82]

    Bose A, Tulapurkar A A 2019 J. Magn. Magn. Mater. 491 165526Google Scholar

    [83]

    Go G, Kim S K 2022 Phys. Rev. B 106 125103Google Scholar

    [84]

    Cui Q R, Zeng B W, Cui P, Yu T, Yang H X 2023 Phys. Rev. B 108 L180401Google Scholar

    [85]

    Hu C, Zhang D, Yan F G, Li Y C, Lü Q S, Zhu W K, Wei Z K, Chang K M, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [86]

    Soriano D, Cardoso C, Fernández-Rossier J 2019 Solid State Commun. 299 113662Google Scholar

    [87]

    金哲珺雨, 曾钊卓, 曹云姗, 严鹏 2024 物理学报 73 017501Google Scholar

    Jin Z J Y, Zeng Z Z, Cao Y S, Yan P 2024 Acta Phys. Sin. 73 017501Google Scholar

    [88]

    刘恩克 2024 物理学报 73 017103Google Scholar

    Liu E K 2024 Acta Phys. Sin. 73 017103Google Scholar

    [89]

    王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 物理学报 69 117501Google Scholar

    Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501Google Scholar

  • [1] Preface to the special topic: Two-dimensional magnetism and topological spin physics. Acta Physica Sinica, 2024, 73(1): 010101. doi: 10.7498/aps.73.010101
    [2] Xie Xiao-Jie, Sun Jun-Song, Qin Ji-Hong, Guo Huai-Ming. Pseudo-Landau levels of hexagonal lattice quantum antiferromagnets under bending strain. Acta Physica Sinica, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [3] Liu En-Ke. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [4] Zhang Shi-Hao, Xie Bo, Peng Ran, Liu Xiao-Qian, Lü Xin, Liu Jian-Peng. Novel electrical properties of moiré graphene systems. Acta Physica Sinica, 2023, 72(6): 067302. doi: 10.7498/aps.72.20230120
    [5] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [6] Wang Yi-Jun, Liu Yang, Yu Guang-Hua. Effect of Pt spacers on interface exchange coupling in ferromagnetic/antiferromagnetic bilayers. Acta Physica Sinica, 2012, 61(16): 167503. doi: 10.7498/aps.61.167503
    [7] Liu Da-Yong, Chen Dong-Meng. Orbital ordering driven spin dimer state in double-layered antiferromagnet K3Cu2O7. Acta Physica Sinica, 2010, 59(10): 7350-7356. doi: 10.7498/aps.59.7350
    [8] Cao Hong-Xia, Zhang Ning. Elastomechanical study of interface coupling in magnetoelectric bilayers. Acta Physica Sinica, 2008, 57(5): 3237-3243. doi: 10.7498/aps.57.3237
    [9] Pan Jing, Zhou Lan, Tao Yong-Chun, Hu Jing-Guo. Spin waves in ferromagnetic/antiferrmagnetic bilayers under the stress field. Acta Physica Sinica, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [10] Xu Xiao-Yong, Pan Jing, Hu Jing-Guo. Configuration of the antiferromagnetic magnetization and the exchange anisotropy in exchange-biased bilayers. Acta Physica Sinica, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [11] Xu Yan, Xue De-Sheng, Zuo Wei, Li Fa-Shen. Nonlinear surface spin waves on ferromagnetic media with inhomogeneous exchange anisotropy. Acta Physica Sinica, 2003, 52(11): 2896-2900. doi: 10.7498/aps.52.2896
    [12] Li Ming-Hua, Yu Guang-Hua, He Ge, Zhu Feng-Wu, Lai Wu-Yan. . Acta Physica Sinica, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [13] Yu Deng-Ke, Gu Qiang, Wang Han-Ting, Shen Jue-Lian. Quantum Phase Transition in a Bilayer Heisenberg Antiferromagnet. Acta Physica Sinica, 1999, 48(13): 169-174. doi: 10.7498/aps.48.169
    [14] TIAN JU-PING, WANG WEI-ZHONG, YAO KAI-LUN. CHARGE DENSITY WAVE INDUCED BY INTERCHAIN NEXT-NEAREST-NEIGHBORING HOPPING INTERACTION OF ELECTRONS IN ORGANIC FEROMAGNETS. Acta Physica Sinica, 1999, 48(8): 1535-1540. doi: 10.7498/aps.48.1535
    [15] TAO RUI-BAO, PU FU-CHO. THE SPIN WAVE THEORY OF A HEISENBERG FERROMAGNETIC SYSTEM WITH BIQUADRATIC EXCHANGE INTERACTION AT LOW TEMPERATURES. Acta Physica Sinica, 1980, 29(5): 635-643. doi: 10.7498/aps.29.635
    [16] LAI WU-YAN, WANG DING-SHENG, PU FU-CHO. DIPOLE-EXCHANGE SPIN WAVES IN A CYLINDRICAL FERROMAGNET. Acta Physica Sinica, 1977, 26(4): 285-292. doi: 10.7498/aps.26.285
    [17] ZHU YAN-QING, WANG ZHI-QIANG. INFLUENCE OF PHONON-MAGNON COUPLING ON THE INFRARED ABSORPTION IN ANTIFERROMAGNETS. Acta Physica Sinica, 1966, 22(3): 360-370. doi: 10.7498/aps.22.360
    [18] LI YIN-YUAN, FANG LI-ZHI, GU SHI-JIE. EFFECT OF IMPERFECTIONS ON SPIN WAVES IN FERROMAGNETS. Acta Physica Sinica, 1963, 19(9): 599-612. doi: 10.7498/aps.19.599
    [19] LI YIN-YUAN, ZHU YAN-QING. LOCALIZED MODES OF SPIN WAVES IN THE CUBIC FERROMAGNETICS. Acta Physica Sinica, 1963, 19(11): 753-763. doi: 10.7498/aps.19.753
    [20] К ТЕОРИИ СВЕРХПРОВОДИМОСТИ ФЕРРОМАГНЕТИКОВ. Acta Physica Sinica, 1963, 19(2): 103-115. doi: 10.7498/aps.19.103
Metrics
  • Abstract views:  1470
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2024
  • Accepted Date:  26 April 2024
  • Available Online:  24 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回