搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁序与拓扑的耦合: 从基础物理到拓扑磁电子学

刘恩克

引用本文:
Citation:

磁序与拓扑的耦合: 从基础物理到拓扑磁电子学

刘恩克

Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics

Liu En-Ke
PDF
HTML
导出引用
  • 磁学与拓扑物理是两大较为成熟的学科, 二者的结合是新一代磁电子学的需求和基础. 磁性拓扑材料是磁序与拓扑物理耦合的重要产物, 为新兴的拓扑物理提供了材料载体和调控自由度. 磁性外尔半金属实现了时间反演对称破缺下的外尔费米子拓扑物态, 通过拓扑增强的贝利曲率产生了一系列新奇的磁/电/热/光效应; 而外尔电子与磁序的相互作用也使得拓扑电子物理有望成为磁电子学应用的新原理和驱动力. 当前, 新物态与新效应的发现是磁性拓扑材料第一阶段的主要任务和特征, 而动量空间拓扑电子与实空间磁序的相互作用已经开始进入人们的视野. 这两个阶段的深入发展, 将为拓扑磁电子学积累必要的物理基础和应用尝试. 本文着眼于磁性拓扑材料发展的两个阶段, 讲述磁性拓扑材料的提出和实现、均一磁序下的拓扑电子态及新奇物性、局域磁态与拓扑电子的相互作用3个方面, 阐述当前领域内的热点内容和发展趋势, 并对拓扑磁电子学的未来发展进行了思考和展望, 以助力未来拓扑自旋量子器件的快速发展.
    Magnetism and topological physics are both well-developed disciplines, and their combination is a demand and foundation for the development of next-generation magneto-electronics. Magnetic topological materials are important products of coupling between magnetic order and topological physics, providing material carrier and regulatory degrees of freedom for novel topological physics. Magnetic Weyl semimetals realize Weyl fermion states under time-reversal symmetry breaking, leading to a host of novel magnetic, electric, thermal, and optical effects through enhanced Berry curvature originating from topology. The interaction between Weyl electrons and magnetic order also establishes topological electronic physics as a new principle and driving force for magneto-electronic applications. At present, the primary task and characteristic of the first development stage of magnetic topological materials is to discover new states and effects, while the understanding of interaction between topologically nontrivial electrons in momentum space and magnetic order in real space has received attention of researchers. The comprehensive advances of these two stages will accumulate the physical foundation and application explorations for topological magneto-electronics. This paper focuses on the two development stages of magnetic topological materials and discusses three aspects: (i) proposal and realization of strategy for magnetic topological materials; (ii) exploration of electronic states with nontrivial topology under uniform magnetic order and their associated novel physical properties; (iii) the interaction between localized magnetic states and topological electrons. It provides an in-depth discussion on current hot topics and development trends in the field, and future development in topological magneto-electronics, thereby assisting in the future development of topological spin quantum devices.
      通信作者: 刘恩克, ekliu@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2022YFA1403800, 2019YFA0704900)、国家自然科学基金基础科学中心(批准号: 52088101)、国家自然科学基金(批准号: 11974394)、中科院战略性先导科技专项B类 (批准号: XDB33000000)和中国科学院依托大科学装置开展建制化科研(SECUF)项目资助的课题.
      Corresponding author: Liu En-Ke, ekliu@iphy.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2022YFA1403800, 2019YFA0704900), the Fundamental Science Center of the National Natural Science Foundation of China (Grant No. 52088101), the National Natural Science Foundation of China (Grant No. 11974394), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, China (Grant No. XDB33000000), and the Synergetic Extreme Condition User Facility (SECUF) of the Chinese Academy of Sciences, China.
    [1]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [2]

    Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [3]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [4]

    Lü B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [5]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [6]

    Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [7]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [8]

    Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar

    [9]

    Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar

    [10]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [11]

    Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P, Nakatsuji S 2018 Nat. Phys. 14 1119Google Scholar

    [12]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [13]

    Gong Y, Guo J W, Li J H, et al. 2019 Chinese Phys. Lett. 36 076801Google Scholar

    [14]

    Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416Google Scholar

    [15]

    Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [16]

    Chen B, Fei F C, Zhang D Q, Zhang B, Liu W L, Zhang S, Wang P D, Wei B Y, Zhang Y, Zuo Z W, Guo J W, Liu Q Q, Wang Z L, Wu X C, Zong J Y, Xie X D, Chen W, Sun Z, Wang S C, Zhang Y, Zhang M H, Wang X F, Song F Q, Zhang H J, Shen D W, Wang B G 2019 Nat. Commun. 10 4469Google Scholar

    [17]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [18]

    Sun H Y, Xia B W, Chen Z J, Zhang Y J, Liu P F, Yao Q S, Tang H, Zhao Y J, Xu H, Liu Q H 2019 Phys. Rev. Lett. 123 096401Google Scholar

    [19]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [20]

    Xing Y Q, Shen J L, Chen H, Huang L, Gao Y X, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G J, Cao L, Zhang X L, Fan P, Ma R S, Wang Q, Yin Q W, Lei H C, Ji W, Du S X, Yang H T, Wang W H, Shen C M, Lin X, Liu E K, Shen B G, Wang Z Q, Gao H J 2020 Nat. Commun. 11 5613Google Scholar

    [21]

    Huang L, Kong X H, Zheng Q, Xing Y Q, Chen H, Li Y, Hu Z X, Zhu S Y, Qiao J S, Zhang Y Y, Cheng H X, Cheng Z H, Qiu X G, Liu E K, Lei H C, Lin X, Wang Z Q, Yang H T, Ji W, Gao H J 2023 Nat. Commun. 14 5230Google Scholar

    [22]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [23]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [24]

    Shen J L, Yao Q S, Zeng Q Q, Sun H Y, Xi X K, Wu G H, Wang W H, Shen B G, Liu Q H, Liu E K 2020 Phys. Rev. Lett. 125 086602Google Scholar

    [25]

    Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G H, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar

    [26]

    杨金颖, 王彬彬, 刘恩克 2023 物理学报 72 177103Google Scholar

    Yang J Y, Wang B B, Liu E K 2023 Acta Phys. Sin. 72 177103Google Scholar

    [27]

    Zhang S, Wang Y, Zeng Q Q, Shen J L, Zheng X, Yang J, Wang Z, Xi C, Wang B B, Zhou M, Huang R, Wei H, Yao Y, Wang S, Parkin S S P, Felser C, Liu E K, Shen B G 2022 Proc. Natl. Acad. Sci. USA 119 e2208505119Google Scholar

    [28]

    Zeng Q Q, Yi C, Shen J L, Wang B B, Wei H, Shi Y, Liu E K 2022 Appl. Phys. Lett. 121 162405Google Scholar

    [29]

    Jiang B Y, Wang L, Bi R, Fan J W, Zhao J L, Yu D P, Li Z L, Wu X S 2021 Phys. Rev. Lett. 126 236601Google Scholar

    [30]

    Shen J L, Gao J C, Yi C J, Li M, Zhang S, Yang J Y, Wang B B, Zhou M, Huang R J, Wei H X, Yang H T, Shi Y G, Xu X H, Gao H J, Shen B G, Li G, Wang Z J, Liu E K 2023 The Innovation 4 100399Google Scholar

    [31]

    Li P G, Koo J, Ning W, Li J G, Miao L X, Min L J, Zhu Y L, Wang Y, Alem N, Liu C X, Mao Z Q, Yan B H 2020 Nat. Commun. 11 3476Google Scholar

    [32]

    Tsai H, Higo T, Kondou K, Nomoto T, Sakai A, Kobayashi A, Nakano T, Yakushiji K, Arita R, Miwa S, Otani Y, Nakatsuji S 2020 Nature 580 608Google Scholar

    [33]

    Xie H, Chen X, Zhang Q, Mu Z Q, Zhang X H, Yan B H, Wu Y H 2022 Nat. Commun. 13 5744Google Scholar

    [34]

    Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

    [35]

    Chen X Z, Higo T, Tanaka K, Nomoto T, Tsai H S, Idzuchi H, Shiga M, Sakamoto S, Ando R, Kosaki H, Matsuo T, Nishio-Hamane D, Arita R, Miwa S, Nakatsuji S 2023 Nature 613 490Google Scholar

    [36]

    Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [37]

    Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Min B I, Yang B J, Kim J S 2018 Nat. Mater. 17 794Google Scholar

    [38]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [39]

    Wang X, Tang J, Xia X X, et al. 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [40]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [41]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [42]

    Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar

    [43]

    Muechler L, Liu E K, Gayles J, Xu Q N, Felser C, Sun Y 2020 Phys. Rev. B 101 115106Google Scholar

    [44]

    Howard S, Jiao L, Wang Z Y, Morali N, Batabyal R, Kumar-Nag P, Avraham N, Beidenkopf H, Vir P, Liu E K, Shekhar C, Felser C, Hughes T, Madhavan V 2021 Nat. Commun. 12 4269Google Scholar

    [45]

    Araki Y, Nomura K 2018 Phys. Rev. Appl. 10 014007Google Scholar

    [46]

    Kobayashi K, Ominato Y, Nomura K 2018 J Phys Soc Jpn 87 073707Google Scholar

    [47]

    Gaudet J, Yang H Y, Baidya S, Lu B Z, Xu G Y, Zhao Y, Rodriguez-Rivera J A, Hoffmann C M, Graf D E, Torchinsky D H, Nikolic P, Vanderbilt D, Tafti F, Broholm C L 2021 Nat. Mater. 20 1650Google Scholar

    [48]

    Kurebayashi D, Nomura K 2019 Sci. Rep. 9 5365Google Scholar

    [49]

    Kurebayashi D, Araki Y, Nomura K 2021 J Phys Soc Jpn 90 084702Google Scholar

    [50]

    Wang Q Y, Zeng Y, Yuan K, Zeng Q Q, Gu P F, Xu X L, Wang H W, Han Z, Nomura K, Wang W H, Liu E K, Hou Y L, Ye Y 2022 Nat. Electron. 6 119Google Scholar

    [51]

    Araki Y, Ieda J 2021 Phys. Rev. Lett. 127 277205Google Scholar

    [52]

    Yamanouchi M, Araki Y, Sakai T, Uemura T, Ohta H, Ieda J 2022 Sci. Adv. 8 eabl6192Google Scholar

  • 图 1  磁性拓扑材料及其物性自由度

    Fig. 1.  Magnetic topological material and the degrees of freedom of physical properties.

    图 2  基于磁性拓扑物理与材料的丰富物性

    Fig. 2.  Rich effects based on the magnetic topological semimetal.

    图 3  磁性外尔体系中磁畴壁上产生的轴向电磁场 (E5, B5)及诱发的霍尔电流j (H)[45]

    Fig. 3.  Schematic showing the axial electromagnetic fields (E5, B5) and the Weyl-induced Hall current j (H), along with a Néel domain wall moving with velocity VDW[45].

    图 4  动量空间拓扑电子态与实空间非平庸磁态的耦合与作用

    Fig. 4.  Coupling and interaction between momentum-space topological electronic states and real-space nontrivial magnetic states.

  • [1]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [2]

    Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [3]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [4]

    Lü B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [5]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [6]

    Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [7]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [8]

    Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar

    [9]

    Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar

    [10]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [11]

    Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P, Nakatsuji S 2018 Nat. Phys. 14 1119Google Scholar

    [12]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [13]

    Gong Y, Guo J W, Li J H, et al. 2019 Chinese Phys. Lett. 36 076801Google Scholar

    [14]

    Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416Google Scholar

    [15]

    Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [16]

    Chen B, Fei F C, Zhang D Q, Zhang B, Liu W L, Zhang S, Wang P D, Wei B Y, Zhang Y, Zuo Z W, Guo J W, Liu Q Q, Wang Z L, Wu X C, Zong J Y, Xie X D, Chen W, Sun Z, Wang S C, Zhang Y, Zhang M H, Wang X F, Song F Q, Zhang H J, Shen D W, Wang B G 2019 Nat. Commun. 10 4469Google Scholar

    [17]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [18]

    Sun H Y, Xia B W, Chen Z J, Zhang Y J, Liu P F, Yao Q S, Tang H, Zhao Y J, Xu H, Liu Q H 2019 Phys. Rev. Lett. 123 096401Google Scholar

    [19]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [20]

    Xing Y Q, Shen J L, Chen H, Huang L, Gao Y X, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G J, Cao L, Zhang X L, Fan P, Ma R S, Wang Q, Yin Q W, Lei H C, Ji W, Du S X, Yang H T, Wang W H, Shen C M, Lin X, Liu E K, Shen B G, Wang Z Q, Gao H J 2020 Nat. Commun. 11 5613Google Scholar

    [21]

    Huang L, Kong X H, Zheng Q, Xing Y Q, Chen H, Li Y, Hu Z X, Zhu S Y, Qiao J S, Zhang Y Y, Cheng H X, Cheng Z H, Qiu X G, Liu E K, Lei H C, Lin X, Wang Z Q, Yang H T, Ji W, Gao H J 2023 Nat. Commun. 14 5230Google Scholar

    [22]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [23]

    Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar

    [24]

    Shen J L, Yao Q S, Zeng Q Q, Sun H Y, Xi X K, Wu G H, Wang W H, Shen B G, Liu Q H, Liu E K 2020 Phys. Rev. Lett. 125 086602Google Scholar

    [25]

    Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G H, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar

    [26]

    杨金颖, 王彬彬, 刘恩克 2023 物理学报 72 177103Google Scholar

    Yang J Y, Wang B B, Liu E K 2023 Acta Phys. Sin. 72 177103Google Scholar

    [27]

    Zhang S, Wang Y, Zeng Q Q, Shen J L, Zheng X, Yang J, Wang Z, Xi C, Wang B B, Zhou M, Huang R, Wei H, Yao Y, Wang S, Parkin S S P, Felser C, Liu E K, Shen B G 2022 Proc. Natl. Acad. Sci. USA 119 e2208505119Google Scholar

    [28]

    Zeng Q Q, Yi C, Shen J L, Wang B B, Wei H, Shi Y, Liu E K 2022 Appl. Phys. Lett. 121 162405Google Scholar

    [29]

    Jiang B Y, Wang L, Bi R, Fan J W, Zhao J L, Yu D P, Li Z L, Wu X S 2021 Phys. Rev. Lett. 126 236601Google Scholar

    [30]

    Shen J L, Gao J C, Yi C J, Li M, Zhang S, Yang J Y, Wang B B, Zhou M, Huang R J, Wei H X, Yang H T, Shi Y G, Xu X H, Gao H J, Shen B G, Li G, Wang Z J, Liu E K 2023 The Innovation 4 100399Google Scholar

    [31]

    Li P G, Koo J, Ning W, Li J G, Miao L X, Min L J, Zhu Y L, Wang Y, Alem N, Liu C X, Mao Z Q, Yan B H 2020 Nat. Commun. 11 3476Google Scholar

    [32]

    Tsai H, Higo T, Kondou K, Nomoto T, Sakai A, Kobayashi A, Nakano T, Yakushiji K, Arita R, Miwa S, Otani Y, Nakatsuji S 2020 Nature 580 608Google Scholar

    [33]

    Xie H, Chen X, Zhang Q, Mu Z Q, Zhang X H, Yan B H, Wu Y H 2022 Nat. Commun. 13 5744Google Scholar

    [34]

    Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

    [35]

    Chen X Z, Higo T, Tanaka K, Nomoto T, Tsai H S, Idzuchi H, Shiga M, Sakamoto S, Ando R, Kosaki H, Matsuo T, Nishio-Hamane D, Arita R, Miwa S, Nakatsuji S 2023 Nature 613 490Google Scholar

    [36]

    Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [37]

    Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Min B I, Yang B J, Kim J S 2018 Nat. Mater. 17 794Google Scholar

    [38]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [39]

    Wang X, Tang J, Xia X X, et al. 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [40]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [41]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [42]

    Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar

    [43]

    Muechler L, Liu E K, Gayles J, Xu Q N, Felser C, Sun Y 2020 Phys. Rev. B 101 115106Google Scholar

    [44]

    Howard S, Jiao L, Wang Z Y, Morali N, Batabyal R, Kumar-Nag P, Avraham N, Beidenkopf H, Vir P, Liu E K, Shekhar C, Felser C, Hughes T, Madhavan V 2021 Nat. Commun. 12 4269Google Scholar

    [45]

    Araki Y, Nomura K 2018 Phys. Rev. Appl. 10 014007Google Scholar

    [46]

    Kobayashi K, Ominato Y, Nomura K 2018 J Phys Soc Jpn 87 073707Google Scholar

    [47]

    Gaudet J, Yang H Y, Baidya S, Lu B Z, Xu G Y, Zhao Y, Rodriguez-Rivera J A, Hoffmann C M, Graf D E, Torchinsky D H, Nikolic P, Vanderbilt D, Tafti F, Broholm C L 2021 Nat. Mater. 20 1650Google Scholar

    [48]

    Kurebayashi D, Nomura K 2019 Sci. Rep. 9 5365Google Scholar

    [49]

    Kurebayashi D, Araki Y, Nomura K 2021 J Phys Soc Jpn 90 084702Google Scholar

    [50]

    Wang Q Y, Zeng Y, Yuan K, Zeng Q Q, Gu P F, Xu X L, Wang H W, Han Z, Nomura K, Wang W H, Liu E K, Hou Y L, Ye Y 2022 Nat. Electron. 6 119Google Scholar

    [51]

    Araki Y, Ieda J 2021 Phys. Rev. Lett. 127 277205Google Scholar

    [52]

    Yamanouchi M, Araki Y, Sakai T, Uemura T, Ohta H, Ieda J 2022 Sci. Adv. 8 eabl6192Google Scholar

  • [1] 二维及拓扑自旋物理专题编者按. 物理学报, 2024, 73(1): 010101. doi: 10.7498/aps.73.010101
    [2] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [3] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] 施洪潮, 唐炳, 刘超飞. 双层蜂窝状海森伯铁磁体中层间交换耦合相互作用对拓扑相的影响. 物理学报, 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [5] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [6] 张世豪, 解博, 彭然, 刘晓迁, 吕昕, 刘健鹏. 莫尔石墨烯体系的新奇电学性质. 物理学报, 2023, 72(6): 067302. doi: 10.7498/aps.72.20230120
    [7] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [8] 面向类脑计算的物理电子学专题编者按. 物理学报, 2022, 71(14): 140101. doi: 10.7498/aps.71.140101
    [9] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [10] 孙慧敏, 何庆林. 层状磁性拓扑材料中的物理问题与实验进展. 物理学报, 2021, 70(12): 127302. doi: 10.7498/aps.70.20210133
    [11] 姜天舒, 肖孟, 张昭庆, 陈子亭. 周期与非周期传输线网络的物理与拓扑性质. 物理学报, 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [12] 梅宇涵, 邵越, 杭志宏. 基于紧束缚模型的拓扑物理微波实验验证平台的开发. 物理学报, 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [13] 王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰. 拓扑光子学研究进展. 物理学报, 2019, 68(22): 224206. doi: 10.7498/aps.68.20191437
    [14] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [15] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [16] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [17] 李野华, 范志强, 张振华. 非金属原子边缘修饰InSe纳米带的磁电子学特性及应变调控. 物理学报, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [18] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [19] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [20] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
计量
  • 文章访问数:  2635
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 修回日期:  2023-12-23
  • 上网日期:  2023-12-26
  • 刊出日期:  2024-01-05

/

返回文章
返回