-
磁学与拓扑物理是两大较为成熟的学科, 二者的结合是新一代磁电子学的需求和基础. 磁性拓扑材料是磁序与拓扑物理耦合的重要产物, 为新兴的拓扑物理提供了材料载体和调控自由度. 磁性外尔半金属实现了时间反演对称破缺下的外尔费米子拓扑物态, 通过拓扑增强的贝利曲率产生了一系列新奇的磁/电/热/光效应; 而外尔电子与磁序的相互作用也使得拓扑电子物理有望成为磁电子学应用的新原理和驱动力. 当前, 新物态与新效应的发现是磁性拓扑材料第一阶段的主要任务和特征, 而动量空间拓扑电子与实空间磁序的相互作用已经开始进入人们的视野. 这两个阶段的深入发展, 将为拓扑磁电子学积累必要的物理基础和应用尝试. 本文着眼于磁性拓扑材料发展的两个阶段, 讲述磁性拓扑材料的提出和实现、均一磁序下的拓扑电子态及新奇物性、局域磁态与拓扑电子的相互作用3个方面, 阐述当前领域内的热点内容和发展趋势, 并对拓扑磁电子学的未来发展进行了思考和展望, 以助力未来拓扑自旋量子器件的快速发展.Magnetism and topological physics are both well-developed disciplines, and their combination is a demand and foundation for the development of next-generation magneto-electronics. Magnetic topological materials are important products of coupling between magnetic order and topological physics, providing material carrier and regulatory degrees of freedom for novel topological physics. Magnetic Weyl semimetals realize Weyl fermion states under time-reversal symmetry breaking, leading to a host of novel magnetic, electric, thermal, and optical effects through enhanced Berry curvature originating from topology. The interaction between Weyl electrons and magnetic order also establishes topological electronic physics as a new principle and driving force for magneto-electronic applications. At present, the primary task and characteristic of the first development stage of magnetic topological materials is to discover new states and effects, while the understanding of interaction between topologically nontrivial electrons in momentum space and magnetic order in real space has received attention of researchers. The comprehensive advances of these two stages will accumulate the physical foundation and application explorations for topological magneto-electronics. This paper focuses on the two development stages of magnetic topological materials and discusses three aspects: (i) proposal and realization of strategy for magnetic topological materials; (ii) exploration of electronic states with nontrivial topology under uniform magnetic order and their associated novel physical properties; (iii) the interaction between localized magnetic states and topological electrons. It provides an in-depth discussion on current hot topics and development trends in the field, and future development in topological magneto-electronics, thereby assisting in the future development of topological spin quantum devices.
[1] Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar
[2] Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar
[3] Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar
[4] Lü B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar
[5] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar
[6] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar
[7] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar
[8] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar
[9] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar
[10] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar
[11] Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P, Nakatsuji S 2018 Nat. Phys. 14 1119Google Scholar
[12] Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar
[13] Gong Y, Guo J W, Li J H, et al. 2019 Chinese Phys. Lett. 36 076801Google Scholar
[14] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416Google Scholar
[15] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar
[16] Chen B, Fei F C, Zhang D Q, Zhang B, Liu W L, Zhang S, Wang P D, Wei B Y, Zhang Y, Zuo Z W, Guo J W, Liu Q Q, Wang Z L, Wu X C, Zong J Y, Xie X D, Chen W, Sun Z, Wang S C, Zhang Y, Zhang M H, Wang X F, Song F Q, Zhang H J, Shen D W, Wang B G 2019 Nat. Commun. 10 4469Google Scholar
[17] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar
[18] Sun H Y, Xia B W, Chen Z J, Zhang Y J, Liu P F, Yao Q S, Tang H, Zhao Y J, Xu H, Liu Q H 2019 Phys. Rev. Lett. 123 096401Google Scholar
[19] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar
[20] Xing Y Q, Shen J L, Chen H, Huang L, Gao Y X, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G J, Cao L, Zhang X L, Fan P, Ma R S, Wang Q, Yin Q W, Lei H C, Ji W, Du S X, Yang H T, Wang W H, Shen C M, Lin X, Liu E K, Shen B G, Wang Z Q, Gao H J 2020 Nat. Commun. 11 5613Google Scholar
[21] Huang L, Kong X H, Zheng Q, Xing Y Q, Chen H, Li Y, Hu Z X, Zhu S Y, Qiao J S, Zhang Y Y, Cheng H X, Cheng Z H, Qiu X G, Liu E K, Lei H C, Lin X, Wang Z Q, Yang H T, Ji W, Gao H J 2023 Nat. Commun. 14 5230Google Scholar
[22] Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar
[23] Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar
[24] Shen J L, Yao Q S, Zeng Q Q, Sun H Y, Xi X K, Wu G H, Wang W H, Shen B G, Liu Q H, Liu E K 2020 Phys. Rev. Lett. 125 086602Google Scholar
[25] Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G H, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar
[26] 杨金颖, 王彬彬, 刘恩克 2023 物理学报 72 177103Google Scholar
Yang J Y, Wang B B, Liu E K 2023 Acta Phys. Sin. 72 177103Google Scholar
[27] Zhang S, Wang Y, Zeng Q Q, Shen J L, Zheng X, Yang J, Wang Z, Xi C, Wang B B, Zhou M, Huang R, Wei H, Yao Y, Wang S, Parkin S S P, Felser C, Liu E K, Shen B G 2022 Proc. Natl. Acad. Sci. USA 119 e2208505119Google Scholar
[28] Zeng Q Q, Yi C, Shen J L, Wang B B, Wei H, Shi Y, Liu E K 2022 Appl. Phys. Lett. 121 162405Google Scholar
[29] Jiang B Y, Wang L, Bi R, Fan J W, Zhao J L, Yu D P, Li Z L, Wu X S 2021 Phys. Rev. Lett. 126 236601Google Scholar
[30] Shen J L, Gao J C, Yi C J, Li M, Zhang S, Yang J Y, Wang B B, Zhou M, Huang R J, Wei H X, Yang H T, Shi Y G, Xu X H, Gao H J, Shen B G, Li G, Wang Z J, Liu E K 2023 The Innovation 4 100399Google Scholar
[31] Li P G, Koo J, Ning W, Li J G, Miao L X, Min L J, Zhu Y L, Wang Y, Alem N, Liu C X, Mao Z Q, Yan B H 2020 Nat. Commun. 11 3476Google Scholar
[32] Tsai H, Higo T, Kondou K, Nomoto T, Sakai A, Kobayashi A, Nakano T, Yakushiji K, Arita R, Miwa S, Otani Y, Nakatsuji S 2020 Nature 580 608Google Scholar
[33] Xie H, Chen X, Zhang Q, Mu Z Q, Zhang X H, Yan B H, Wu Y H 2022 Nat. Commun. 13 5744Google Scholar
[34] Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar
[35] Chen X Z, Higo T, Tanaka K, Nomoto T, Tsai H S, Idzuchi H, Shiga M, Sakamoto S, Ando R, Kosaki H, Matsuo T, Nishio-Hamane D, Arita R, Miwa S, Nakatsuji S 2023 Nature 613 490Google Scholar
[36] Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar
[37] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Min B I, Yang B J, Kim J S 2018 Nat. Mater. 17 794Google Scholar
[38] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[39] Wang X, Tang J, Xia X X, et al. 2019 Sci. Adv. 5 eaaw8904Google Scholar
[40] Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar
[41] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar
[42] Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar
[43] Muechler L, Liu E K, Gayles J, Xu Q N, Felser C, Sun Y 2020 Phys. Rev. B 101 115106Google Scholar
[44] Howard S, Jiao L, Wang Z Y, Morali N, Batabyal R, Kumar-Nag P, Avraham N, Beidenkopf H, Vir P, Liu E K, Shekhar C, Felser C, Hughes T, Madhavan V 2021 Nat. Commun. 12 4269Google Scholar
[45] Araki Y, Nomura K 2018 Phys. Rev. Appl. 10 014007Google Scholar
[46] Kobayashi K, Ominato Y, Nomura K 2018 J Phys Soc Jpn 87 073707Google Scholar
[47] Gaudet J, Yang H Y, Baidya S, Lu B Z, Xu G Y, Zhao Y, Rodriguez-Rivera J A, Hoffmann C M, Graf D E, Torchinsky D H, Nikolic P, Vanderbilt D, Tafti F, Broholm C L 2021 Nat. Mater. 20 1650Google Scholar
[48] Kurebayashi D, Nomura K 2019 Sci. Rep. 9 5365Google Scholar
[49] Kurebayashi D, Araki Y, Nomura K 2021 J Phys Soc Jpn 90 084702Google Scholar
[50] Wang Q Y, Zeng Y, Yuan K, Zeng Q Q, Gu P F, Xu X L, Wang H W, Han Z, Nomura K, Wang W H, Liu E K, Hou Y L, Ye Y 2022 Nat. Electron. 6 119Google Scholar
[51] Araki Y, Ieda J 2021 Phys. Rev. Lett. 127 277205Google Scholar
[52] Yamanouchi M, Araki Y, Sakai T, Uemura T, Ohta H, Ieda J 2022 Sci. Adv. 8 eabl6192Google Scholar
-
-
[1] Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar
[2] Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar
[3] Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar
[4] Lü B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar
[5] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar
[6] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar
[7] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar
[8] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar
[9] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar
[10] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar
[11] Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P, Nakatsuji S 2018 Nat. Phys. 14 1119Google Scholar
[12] Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar
[13] Gong Y, Guo J W, Li J H, et al. 2019 Chinese Phys. Lett. 36 076801Google Scholar
[14] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416Google Scholar
[15] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar
[16] Chen B, Fei F C, Zhang D Q, Zhang B, Liu W L, Zhang S, Wang P D, Wei B Y, Zhang Y, Zuo Z W, Guo J W, Liu Q Q, Wang Z L, Wu X C, Zong J Y, Xie X D, Chen W, Sun Z, Wang S C, Zhang Y, Zhang M H, Wang X F, Song F Q, Zhang H J, Shen D W, Wang B G 2019 Nat. Commun. 10 4469Google Scholar
[17] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar
[18] Sun H Y, Xia B W, Chen Z J, Zhang Y J, Liu P F, Yao Q S, Tang H, Zhao Y J, Xu H, Liu Q H 2019 Phys. Rev. Lett. 123 096401Google Scholar
[19] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar
[20] Xing Y Q, Shen J L, Chen H, Huang L, Gao Y X, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G J, Cao L, Zhang X L, Fan P, Ma R S, Wang Q, Yin Q W, Lei H C, Ji W, Du S X, Yang H T, Wang W H, Shen C M, Lin X, Liu E K, Shen B G, Wang Z Q, Gao H J 2020 Nat. Commun. 11 5613Google Scholar
[21] Huang L, Kong X H, Zheng Q, Xing Y Q, Chen H, Li Y, Hu Z X, Zhu S Y, Qiao J S, Zhang Y Y, Cheng H X, Cheng Z H, Qiu X G, Liu E K, Lei H C, Lin X, Wang Z Q, Yang H T, Ji W, Gao H J 2023 Nat. Commun. 14 5230Google Scholar
[22] Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar
[23] Okamura Y, Minami S, Kato Y, Fujishiro Y, Kaneko Y, Ikeda J, Muramoto J, Kaneko R, Ueda K, Kocsis V, Kanazawa N, Taguchi Y, Koretsune T, Fujiwara K, Tsukazaki A, Arita R, Tokura Y, Takahashi Y 2020 Nat. Commun. 11 4619Google Scholar
[24] Shen J L, Yao Q S, Zeng Q Q, Sun H Y, Xi X K, Wu G H, Wang W H, Shen B G, Liu Q H, Liu E K 2020 Phys. Rev. Lett. 125 086602Google Scholar
[25] Shen J L, Zeng Q Q, Zhang S, Sun H Y, Yao Q S, Xi X K, Wang W H, Wu G H, Shen B G, Liu Q H, Liu E K 2020 Adv. Funct. Mater. 30 2000830Google Scholar
[26] 杨金颖, 王彬彬, 刘恩克 2023 物理学报 72 177103Google Scholar
Yang J Y, Wang B B, Liu E K 2023 Acta Phys. Sin. 72 177103Google Scholar
[27] Zhang S, Wang Y, Zeng Q Q, Shen J L, Zheng X, Yang J, Wang Z, Xi C, Wang B B, Zhou M, Huang R, Wei H, Yao Y, Wang S, Parkin S S P, Felser C, Liu E K, Shen B G 2022 Proc. Natl. Acad. Sci. USA 119 e2208505119Google Scholar
[28] Zeng Q Q, Yi C, Shen J L, Wang B B, Wei H, Shi Y, Liu E K 2022 Appl. Phys. Lett. 121 162405Google Scholar
[29] Jiang B Y, Wang L, Bi R, Fan J W, Zhao J L, Yu D P, Li Z L, Wu X S 2021 Phys. Rev. Lett. 126 236601Google Scholar
[30] Shen J L, Gao J C, Yi C J, Li M, Zhang S, Yang J Y, Wang B B, Zhou M, Huang R J, Wei H X, Yang H T, Shi Y G, Xu X H, Gao H J, Shen B G, Li G, Wang Z J, Liu E K 2023 The Innovation 4 100399Google Scholar
[31] Li P G, Koo J, Ning W, Li J G, Miao L X, Min L J, Zhu Y L, Wang Y, Alem N, Liu C X, Mao Z Q, Yan B H 2020 Nat. Commun. 11 3476Google Scholar
[32] Tsai H, Higo T, Kondou K, Nomoto T, Sakai A, Kobayashi A, Nakano T, Yakushiji K, Arita R, Miwa S, Otani Y, Nakatsuji S 2020 Nature 580 608Google Scholar
[33] Xie H, Chen X, Zhang Q, Mu Z Q, Zhang X H, Yan B H, Wu Y H 2022 Nat. Commun. 13 5744Google Scholar
[34] Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar
[35] Chen X Z, Higo T, Tanaka K, Nomoto T, Tsai H S, Idzuchi H, Shiga M, Sakamoto S, Ando R, Kosaki H, Matsuo T, Nishio-Hamane D, Arita R, Miwa S, Nakatsuji S 2023 Nature 613 490Google Scholar
[36] Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar
[37] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Min B I, Yang B J, Kim J S 2018 Nat. Mater. 17 794Google Scholar
[38] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[39] Wang X, Tang J, Xia X X, et al. 2019 Sci. Adv. 5 eaaw8904Google Scholar
[40] Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar
[41] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar
[42] Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar
[43] Muechler L, Liu E K, Gayles J, Xu Q N, Felser C, Sun Y 2020 Phys. Rev. B 101 115106Google Scholar
[44] Howard S, Jiao L, Wang Z Y, Morali N, Batabyal R, Kumar-Nag P, Avraham N, Beidenkopf H, Vir P, Liu E K, Shekhar C, Felser C, Hughes T, Madhavan V 2021 Nat. Commun. 12 4269Google Scholar
[45] Araki Y, Nomura K 2018 Phys. Rev. Appl. 10 014007Google Scholar
[46] Kobayashi K, Ominato Y, Nomura K 2018 J Phys Soc Jpn 87 073707Google Scholar
[47] Gaudet J, Yang H Y, Baidya S, Lu B Z, Xu G Y, Zhao Y, Rodriguez-Rivera J A, Hoffmann C M, Graf D E, Torchinsky D H, Nikolic P, Vanderbilt D, Tafti F, Broholm C L 2021 Nat. Mater. 20 1650Google Scholar
[48] Kurebayashi D, Nomura K 2019 Sci. Rep. 9 5365Google Scholar
[49] Kurebayashi D, Araki Y, Nomura K 2021 J Phys Soc Jpn 90 084702Google Scholar
[50] Wang Q Y, Zeng Y, Yuan K, Zeng Q Q, Gu P F, Xu X L, Wang H W, Han Z, Nomura K, Wang W H, Liu E K, Hou Y L, Ye Y 2022 Nat. Electron. 6 119Google Scholar
[51] Araki Y, Ieda J 2021 Phys. Rev. Lett. 127 277205Google Scholar
[52] Yamanouchi M, Araki Y, Sakai T, Uemura T, Ohta H, Ieda J 2022 Sci. Adv. 8 eabl6192Google Scholar
计量
- 文章访问数: 4884
- PDF下载量: 567
- 被引次数: 0