Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning magnetoresistance of chromium chloride tunnel junction through the interface and multi-field effect

Fan Yi-Jie Zhang Ruan Chen Yu Cai Xing-Han

Citation:

Tuning magnetoresistance of chromium chloride tunnel junction through the interface and multi-field effect

Fan Yi-Jie, Zhang Ruan, Chen Yu, Cai Xing-Han
PDF
HTML
Get Citation
  • Magnetic tunnel junctions (MTJs) serve as essential platforms for investigating spin transport properties, magnetic phase transitions, and anisotropy in magnetic materials. Recently two-dimensional van der Waals antiferromagnetic insulators like chromium chloride (CrCl3) or chromium iodide (CrI3) have been used to develop spin-filtering magnetic tunnel junctions (sf-MTJs), improving the device performance for material property exploration and spintronic applications. However, it is crucial to recognize that the spin-filtering effect is not the sole determining factor of tunneling magnetoresistance (TMR) in these junctions; the interface magnetic exchange interactions and adjustable electrode density of states (DOS) fluctuations, response to applied electric or magnetic fields, can also influence the tunneling current.In this study, we fabricate MTJ devices by using mechanically-exfoliated few-layer CrCl3 as the tunnel barrier and few-layer graphene (FLG) as electrodes through dry transfer technique. Conducting low-temperature quantum transport measurements, we observe unconventional TMR behaviors, including bias-voltage-dependent TMR, oscillatory tunneling current under high magnetic fields, and tunable tunneling current via gate voltage.A qualitative model of elastic tunneling current is employed to analyze the spin and band characteristics of the MTJ device. The observed bias-voltage-dependent TMR is attributed to the changes in the tunneling mechanism due to magnetic proximity effect, which induces magnetization in the FLG electrode near the FLG/CrCl3 interface. The antiparallel alignment of polarized spin to CrCl3’s magnetization results in injected charge carriers facing a higher tunnel barrier, leading to negative TMR at lower bias voltages. As the bias voltage increases, the magnetic proximity effect lessens, and the device reverts to its conventional spin-filtering functionality. The oscillatory tunneling current is explained by the graphene electrode’s quantum oscillatory density of states behavior under vertical magnetic fields, which can be controlled by the applied gate voltage.This study contributes to the understanding of previously unexplored TMR phenomena in two-dimensional MTJs, deepening our insights into carrier transport properties in these heterostructures and broadening avenues for investigating the physical properties of two-dimensional magnetic materials and their spintronic applications.
      Corresponding author: Cai Xing-Han, xhcai@sjtu.edu.cn
    • Funds: Project supported by the National Key Research & Development Program (Grant No. 2020YFA0309200), the Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University (Grant No. 21TQ1400206), and the National Natural Science Foundation of China (Grant Nos. 92064013, 11904226).
    [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [3]

    Worledge D C, Geballe T H 2000 J. Appl. Phys. 88 5277Google Scholar

    [4]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [5]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [6]

    Zeng X, Ye G, Huang S, Ye Q, Li W, Chen C, Kuang H, Li M, Liu Y, Pan Z, Hasan T, Luo J, Lu X, Wang X 2022 Nano Today 42 101373Google Scholar

    [7]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J C, Martin M B, Dlubak B, Seneor P 2022 ACS Nano 16 14007Google Scholar

    [8]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [9]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [10]

    Zhang Y B, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803Google Scholar

    [11]

    Li G H, Andrei E Y 2007 Nat. Phys. 3 623Google Scholar

    [12]

    McGuire M A, Clark G, KC S, Chance W M, Jellison G E, Cooper V R, Xu X D, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [13]

    Zhu R, Zhang W, Shen W, Wong P K J, Wang Q, Liang Q, Tian Z, Zhai Y, Qiu C W, Wee A T S 2020 Nano Lett. 20 5030Google Scholar

    [14]

    Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X, Yankowitz M 2022 Nano Lett. 22 8495Google Scholar

    [15]

    Jiang D, Yuan T Z, Wu Y Z, Wei X Y, Mu G, An Z H, Li W 2020 ACS Appl. Mater. Interfaces 12 49252Google Scholar

    [16]

    Liu Y, Petrovic C 2020 Phys. Rev. B 102 014424Google Scholar

    [17]

    Sun W, Wang W X, Zang J D, Li H, Zhang G B, Wang J L, Cheng Z X 2021 Adv. Funct. Mater. 31 2104452Google Scholar

    [18]

    Zomer P J, Guimarães M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [19]

    Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F 2019 Nat. Nanotechnol. 14 1116Google Scholar

    [20]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [21]

    Klein D R, MacNeill D, Song Q, Larson D T, Fang S, Xu M, Ribeiro R A, Canfield P C, Kaxiras E, Comin R, Jarillo-Herrero P 2019 Nat. Phys. 15 1255Google Scholar

    [22]

    Liehr M, Hazra J, Beckmann K, Mukundan V, Alexandrou I, Yeow T, Race J, Tapily K, Consiglio S, Kurinec S K, Diebold A C, Cady N 2023 J. Vac. Sci. Technol. B 41 012805Google Scholar

    [23]

    Wang J, Ahmadi Z, Lujan D, Choe J, Taniguchi T, Watanabe K, Li X, Shield J E, Hong X 2023 Adv. Sci. 10 2203548Google Scholar

    [24]

    Ghiasi T S, Kaverzin A A, Dismukes A H, de Wal D K, Roy X, van Wees B J 2021 Nat. Nanotechnol. 16 788Google Scholar

    [25]

    Jeong J, Kiem D H, Guo D, Duan R, Watanabe K, Taniguchi T, Liu Z, Han M J, Zheng S, Yang H 2024 Adv. Mater. 36 2310291Google Scholar

    [26]

    Wu Y F, Cui Q R, Zhu M Y, Liu X J, Wang Y, Zhang J Y, Zheng X Q, Shen J X, Cui P, Yang H X, Wang S G 2021 ACS Appl. Mater. Interfaces 13 10656Google Scholar

    [27]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947Google Scholar

    [28]

    Xie B H, Ji Z J, Wu J X, Zhang R, Jin Y M, Watanabe K, Taniguchi T, Liu Z, Cai X H 2023 ACS Nano 17 18352Google Scholar

    [29]

    McClure J W 1957 Phys. Rev. 108 612Google Scholar

  • 图 1  器件的电输运表征测试 (a)器件结构示意图; (b)器件光学显微照片, 其中石墨电极和CrCl3的位置使用虚线框示意标出; (c)隧穿电流随温度的变化, 插图是对2—50 K区域的放大; (d)低温伏安特性曲线, 插图是对–0.6—0.6 V区域的放大; (e)根据图(d)计算的隧穿磁阻曲线; (f)根据图(d)计算的F-N图, 插图为两种隧穿机制下的能带图

    Figure 1.  Transport characterizations of the device: (a) Schematic of the device, with the positions of the graphite electrodes and CrCl3 indicated by dashed boxes; (b) optical micrograph of the device; (c) tunneling current as a function of the temperature. Inset: zoom-in plot of the range between 2–50 K; (d) low-temperature I-V characteristic, inset: zoom-in plot of the range between –0.6–0.6 V; (e) TMR as a function of the bias voltage derived from (d); (f) F-N plot derived from panel (d), insets are band diagram under two tunneling regimes.

    图 2  对器件TMR特性的实验和理论解释 (a)不同偏置电压下的归一化隧穿电流曲线; (b)石墨电极态密度的自旋劈裂示意图, 着色区域表示电子布居数. (c)—(f)磁隧道结自旋结构示意图, 分别对应(c)低偏压、低磁场, (d)低偏压、高磁场, (e)高偏压、低磁场, (f)高偏压、高磁场. (g)隧穿电流随磁场方向与样品法向夹角的变化

    Figure 2.  Experimental and theoretical explanation of TMR characteristics of the device: (a) Normalized tunneling current as a function of the out-of-plane magnetic field under different dc bias voltages; (b) schematic of spin splitting of graphite’s DOS, with the shaded area representing population of electrons. (c)–(f) Schematics of spin configuration of the MTJ, with each plot corresponding to the regime of (c) low bias, low magnetic field, (d) low bias, high magnetic field, (e) high bias, low magnetic field and (f) high bias, high magnetic field, respectively. (g) Tunneling current as a function of the angle between the magnetic field and the normal direction of the sample.

    图 3  隧穿电流的量子振荡 (a)隧穿电流随竖直方向磁场的变化关系曲线, 测试在T = 2 K下进行; (b)少层石墨烯能带的STB模型; (c)少层石墨烯态密度发生部分量子化的示意图. (d)—(f) MTJ器件的能带图(EFBEFT分别代表底电极和顶电极的费米能级) (d)热平衡情况; (e)施加一定负栅极电压的情况; (f)同时施加负栅极电压和正向偏置电压的情况

    Figure 3.  Quantum oscillation of the tunneling current: (a) Tunneling current as a function of the out-of-plane magnetic field, at the temperature of T = 2 K; (b) STB model showing the band structure of few-layer graphene; (c) schematic of partial quantization of DOS in few-layer graphene. (d)–(f) Band structures of MTJ device (EFB and EFT represents the Fermi level of bottom and top graphite electrode, respectively): (d) in thermal equilibrium; (e) with an applied negative gate voltage; (f) with both an applied negative gate voltage and a positive bias voltage, respectively.

    图 4  隧穿电流的栅极电压依赖性 (a)不同栅极电压下隧穿电流随磁场的变化关系; (b)不同磁场下器件的转移特性, 所有测试在T = 2 K下进行

    Figure 4.  Gate dependence of the tunneling current: (a) Tunneling current as a function of the out-of-plane magnetic field with different applied gate voltages; (b) transfer characteristics of the device at selected out-of-plane magnetic fields, all measurements are carried out at the temperature T = 2 K.

  • [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [3]

    Worledge D C, Geballe T H 2000 J. Appl. Phys. 88 5277Google Scholar

    [4]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [5]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [6]

    Zeng X, Ye G, Huang S, Ye Q, Li W, Chen C, Kuang H, Li M, Liu Y, Pan Z, Hasan T, Luo J, Lu X, Wang X 2022 Nano Today 42 101373Google Scholar

    [7]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J C, Martin M B, Dlubak B, Seneor P 2022 ACS Nano 16 14007Google Scholar

    [8]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [9]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [10]

    Zhang Y B, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803Google Scholar

    [11]

    Li G H, Andrei E Y 2007 Nat. Phys. 3 623Google Scholar

    [12]

    McGuire M A, Clark G, KC S, Chance W M, Jellison G E, Cooper V R, Xu X D, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [13]

    Zhu R, Zhang W, Shen W, Wong P K J, Wang Q, Liang Q, Tian Z, Zhai Y, Qiu C W, Wee A T S 2020 Nano Lett. 20 5030Google Scholar

    [14]

    Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X, Yankowitz M 2022 Nano Lett. 22 8495Google Scholar

    [15]

    Jiang D, Yuan T Z, Wu Y Z, Wei X Y, Mu G, An Z H, Li W 2020 ACS Appl. Mater. Interfaces 12 49252Google Scholar

    [16]

    Liu Y, Petrovic C 2020 Phys. Rev. B 102 014424Google Scholar

    [17]

    Sun W, Wang W X, Zang J D, Li H, Zhang G B, Wang J L, Cheng Z X 2021 Adv. Funct. Mater. 31 2104452Google Scholar

    [18]

    Zomer P J, Guimarães M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [19]

    Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F 2019 Nat. Nanotechnol. 14 1116Google Scholar

    [20]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [21]

    Klein D R, MacNeill D, Song Q, Larson D T, Fang S, Xu M, Ribeiro R A, Canfield P C, Kaxiras E, Comin R, Jarillo-Herrero P 2019 Nat. Phys. 15 1255Google Scholar

    [22]

    Liehr M, Hazra J, Beckmann K, Mukundan V, Alexandrou I, Yeow T, Race J, Tapily K, Consiglio S, Kurinec S K, Diebold A C, Cady N 2023 J. Vac. Sci. Technol. B 41 012805Google Scholar

    [23]

    Wang J, Ahmadi Z, Lujan D, Choe J, Taniguchi T, Watanabe K, Li X, Shield J E, Hong X 2023 Adv. Sci. 10 2203548Google Scholar

    [24]

    Ghiasi T S, Kaverzin A A, Dismukes A H, de Wal D K, Roy X, van Wees B J 2021 Nat. Nanotechnol. 16 788Google Scholar

    [25]

    Jeong J, Kiem D H, Guo D, Duan R, Watanabe K, Taniguchi T, Liu Z, Han M J, Zheng S, Yang H 2024 Adv. Mater. 36 2310291Google Scholar

    [26]

    Wu Y F, Cui Q R, Zhu M Y, Liu X J, Wang Y, Zhang J Y, Zheng X Q, Shen J X, Cui P, Yang H X, Wang S G 2021 ACS Appl. Mater. Interfaces 13 10656Google Scholar

    [27]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947Google Scholar

    [28]

    Xie B H, Ji Z J, Wu J X, Zhang R, Jin Y M, Watanabe K, Taniguchi T, Liu Z, Cai X H 2023 ACS Nano 17 18352Google Scholar

    [29]

    McClure J W 1957 Phys. Rev. 108 612Google Scholar

  • [1] Dong Shi-Quan, He An, Liu Wei, Xue Cun. Tunable flux-jump characteristic of multifilamentary composite Nb3Sn superconducting wires in maglev systems. Acta Physica Sinica, 2023, 72(1): 017401. doi: 10.7498/aps.72.20221252
    [2] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [3] Han Xiu-Feng, Zhang Yu, Feng Jia-Feng, Chen Chuan, Deng Hui, Huang Hui, Guo Jing-Hong, Liang Yun, Si Wen-Rong, Jiang An-Feng, Wei Hong-Xiang. Comparison of performance among five types of tunneling magnetoresistance linear sensing units based on MgO magnetic tunnel junction. Acta Physica Sinica, 2022, 71(23): 238502. doi: 10.7498/aps.71.20221278
    [4] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [5] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [6] Jin Dong-Yue, Chen Hu, Wang You, Zhang Wan-Rong, Na Wei-Cong, Guo Bin, Wu Ling, Yang Shao-Meng, Sun Sheng. Process deviation based electrical model of voltage controlled magnetic anisotropy magnetic tunnel junction and its application in read/write circuits. Acta Physica Sinica, 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [7] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [8] Huang Zheng, Long Chao-Yun, Zhou Xun, Xu Ming. Study on tunneling magnetoresistance effects in parabolic well magnetic tunneling junction with double barriers. Acta Physica Sinica, 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [9] Chen Xi, Liu Hou-Fang, Han Xiu-Feng, Ji Yang. The research of the perpendicular magnetic anisotropy in CoFeB/AlOx/Ta and AlOx/CoFeB/Ta structures. Acta Physica Sinica, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [10] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [11] Yan Jing, Qi Xian-Jin, Wang Yin-Gang. Influence of annealing on thermal stability of IrMn-based magnetic tunnel juctions. Acta Physica Sinica, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [12] Zhou Liang, Zhang Jing-Yi. Tunneling radiation of particles with electrical and magnetic charges. Acta Physica Sinica, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [13] Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Lin Tie, Guo Shao-Ling, Chu Jun-Hao, Dai Ning. Magneto-tunneling effect in weakly coupled GaAs/AlGaAs/InGaAs double quantum well tunneling structure. Acta Physica Sinica, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [14] Zhu Lin, Chen Wei-Dong, Xie Zheng-Wei, Li Bo-Zang. The tunnel conductance and tunnel magnetic resistance of NM/FI/NI/FI/NM double spin filter junction. Acta Physica Sinica, 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [15] Wang Yong, Zhang Ze, Zeng Zhong-Ming, Han Xiu-Feng. Electron holography investigation of the barrier of magnetic tunnelling junctions. Acta Physica Sinica, 2006, 55(3): 1148-1152. doi: 10.7498/aps.55.1148
    [16] Yu Dun-Bo, Feng Jia-Feng, Du Yong-Sheng, Han Xiu-Feng, Yan Hui, Ying Qi-Ming, Zhang Guo-Cheng. Composition-modulated hybrid tunnel junctions of La1-xSrxMnO3. Acta Physica Sinica, 2005, 54(10): 4903-4908. doi: 10.7498/aps.54.4903
    [17] WANG MAO-XIANG, SUN CHENG-XIU, SHI XIAO-CHUN, YU JIAN-HUA. RESEARCH OF ELECTRON RESONANT TUNNELING AND LIGHT EMISSION PROPERTIES OF DOUBLE-BARRIER TUNNER JUNCTION. Acta Physica Sinica, 1999, 48(2): 326-331. doi: 10.7498/aps.48.326
    [18] YU JIAN-HUA, SUN CHENG-XIU, WANG MAO-XIANG, ZHANG YOU-WEN, WEI TONG-LI. ELECTRON TUNNELING AND NEGATIVE DIFFERENTIAL RESISTANCE OF MIM LIGHT-EMISSION TUNNEL JUNCTION. Acta Physica Sinica, 1998, 47(2): 300-306. doi: 10.7498/aps.47.300
    [19] CUI GUANG-JI, MENG XIAO-FAN, SHAO KAI. MAGNETIC COUPLING BETWEEN THE RESONANT JOSEPHSON TUNNEL JUNCTION AND THE APLLIED MICROWAVE (Ⅱ). Acta Physica Sinica, 1982, 31(12): 8-12. doi: 10.7498/aps.31.8
    [20] CUI GUANG-JI, MENG XIAO-FAN, SHAO KAI. MAGNETIC COUPLING BETWEEN THE RESONANT JOSEPHSON TUNNEL JUNCTION AND THE APLLIED MICROWAVE (Ⅰ). Acta Physica Sinica, 1982, 31(12): 1-7. doi: 10.7498/aps.31.1-2
Metrics
  • Abstract views:  1757
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2024
  • Accepted Date:  07 May 2024
  • Available Online:  21 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回