搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过界面功函数工程增强Al2Te3/In2Se3铁电隧道结中的隧穿电阻效应

和志坚 欧云 邹代峰 刘运牙

引用本文:
Citation:

通过界面功函数工程增强Al2Te3/In2Se3铁电隧道结中的隧穿电阻效应

和志坚, 欧云, 邹代峰, 刘运牙

Enhanced tunneling electroresistance through interfacial work function engineering in Al2Te3/In2Se3 ferroelectric tunnel junctions

HE Zhijian, OU Yun, ZOU Daifeng, LIU Yunya
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 实现对量子隧穿电阻的精确调控,是铁电隧道结技术迈向应用的核心瓶颈。本研究提出了一种基于界面功函数工程的策略,其核心在于利用铁电极化翻转,主动调控异质结界面的能带对齐,从而在势垒层中诱导出可逆的金属-绝缘体相变,实现对隧穿电阻的调控。以Al2Te3/In2Se3范德瓦尔斯异质结为研究对象,通过第一性原理计算证明,对界面功函数的策略性调控可在势垒层中诱导出可逆的金属-绝缘体转变,从而显著改变其隧穿电阻。非平衡输运模拟进一步显示,该结构实现了高达2.69×105%的隧穿电阻比值。研究结果不仅凸显了Al2Te3/In2Se3作为高性能铁电隧道结的潜力,也为在低维铁电存储器件中设计超高隧穿电阻效应确定了一种普适的设计策略。这项工作为开发多状态非易失性存储器提供了新的思路。
    In recent years, two-dimensional (2D) ferroelectric materials have garnered significant interest, distinguished by their ultrathin geometry, high stability, and switchable polarization states. Ferroelectric tunnel junctions (FTJs) constructed from 2D ferroelectric materials exhibit exceptionally high tunnel electroresistance (TER) ratios, establishing them as leading candidates for next-generation non-volatile memory and logic devices. However, advancing FTJ technology hinges on overcoming the critical challenge of precisely controlling quantum tunneling resistance. Therefore, this study proposes a strategy of interfacial work function engineering, which actively modulates the band alignment of a heterostructure via ferroelectric polarization switching to induce a reversible metal-insulator transition in the barrier layer and modulate TER. Using a van der Waals heterostructure composed of Al2Te3/In2Se3 as a model system, we demonstrate through first-principles calculations that the strategic manipulation of interfacial work functions can induce a reversible metal-insulator transition in the barrier, thereby drastically altering the tunneling conductance. Further analysis indicates that a work function mismatch between the two ferroelectric materials induces varying degrees of interfacial charge transfer, thereby triggering a metal-insulator transition in the van der Waals ferroelectric heterostructure as the external electric field is reversed. Non-equilibrium transport simulations reveal an unprecedented TER ratio of 2.69 × 105%. Our findings not only highlight Al2Te3/In2Se3 as a promising platform for high-performance FTJs but also establish a universal design strategy for engineering ultrahigh TER effects in low-dimensional ferroelectric memory devices. This work opens new avenues for developing energy-efficient, non-volatile memory with enhanced scalability and switching characteristics.
  • [1]

    Luo K-F, Ma Z, Sando D, Zhang Q, Valanoor N 2025 ACS Nano 19 6622

    [2]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181

    [3]

    Zheng N, Li J, Sun H, Zang Y, Jiao P, Shen C, Jiang X, Xia Y, Deng Y, Wu D, Pan X, Nie Y 2025 Sci. Adv. 11 eads0724

    [4]

    Bai X, Zou D, Lei C, He Z, Liu Y 2025 Appl. Phys. Lett. 126 162902

    [5]

    Berdan R, Marukame T, Ota K, Yamaguchi M, Saitoh M, Fujii S, Deguchi J, Nishi Y 2020 Nat. Electron. 3 259

    [6]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802

    [7]

    Yu X, Zhang X, Ma L, Wang J 2024 Adv. Funct. Mater. 34 2409281

    [8]

    Kim D J, Lu H, Ryu S, Bark C W, Eom C B, Tsymbal E Y, Gruverman A 2012 Nano Lett. 12 5697

    [9]

    Li Y, Yang Y, Zhao H, Duan H, Yang C, Min T, Li T 2025 Nano Lett. 25 1680

    [10]

    Junquera J, Ghosez P 2003 Nature 422 506

    [11]

    Yang Q, Tao L, Zhang Y, Li M, Jiang Z, Tsymbal E Y, Alexandrov V 2019 Nano Lett. 19 7385

    [12]

    Jia Y, Yang Q, Fang Y-W, Lu Y, Xie M, Wei J, Tian J, Zhang L, Yang R 2024 Nat. Commun. 15 693

    [13]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357

    [14]

    Qi J, Han H, Yang S, Kang L, Yin H, Zhao G 2024 Appl. Phys. Lett. 125 042903

    [15]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956

    [16]

    Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W-X, Fuhrer M S 2018 Sci. Adv. 4 eaar7720

    [17]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H-J, Park S, Yoo W J 2017 ACS Nano 11 1588

    [18]

    Popov I, Seifert G, Tománek D 2012 Phys. Rev. Lett. 108 156802

    [19]

    Liu Z, Hou P, Sun L, Tsymbal E Y, Jiang J, Yang Q 2023 npj Comput. Mater. 9 6

    [20]

    Xie A, Hao H, Liu C-S, Zheng X, Zhang L, Zeng Z 2023 Phys. Rev. B 107 115427

    [21]

    Li J-H, Cao S-G, Han J-N, Li Z-H, Zhang Z-H 2024 Acta Phys. Sin. 73 137102 (in Chinese) [李景辉, 曹胜果, 韩佳凝, 李占海, 张振华 2024 物理学报 73 137102]

    [22]

    Li Y-N, Xie Y-Q, Wang Y 2021 Acta Phys. Sin. 70 227701 (in Chinese) [李永宁, 谢逸群, 王音 2021 物理学报 70 227701]

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [28]

    Vydrov O A, Heyd J, Krukau A V, Scuseria G E 2006 J. Chem. Phys. 125 074106

    [29]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Soni R, Petraru A, Meuffels P, Vavra O, Ziegler M, Kim S K, Jeong D S, Pertsev N A, Kohlstedt H 2014 Nat. Commun. 5 5414

    [32]

    Chen Y, Guo J, Li M, Wang G, Yuan H, Chen H 2024 Surf. Interf. 51 104597

    [33]

    Fu C-F, Sun J, Luo Q, Li X, Hu W, Yang J 2018 Nano Lett. 18 6312

    [34]

    Fan A, Zhang Q, Yang Z, Li L, Li M, Zhang K, Gao J, Wu F, Wu M, Geng D, Hu W 2025 Sci. Adv. 11 eadx8192

    [35]

    Meng P, Wu Y, Bian R, Pan E, Dong B, Zhao X, Chen J, Wu L, Sun Y, Fu Q, Liu Q, Shi D, Zhang Q, Zhang Y-W, Liu Z, Liu F 2022 Nat. Commun. 13 7696

    [36]

    Ding J, Shao D-F, Li M, Wen L-W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601

    [37]

    Lu H-L, Yang M, Xie Z-Y, Geng Y, Zhang Y, Wang P-F, Sun Q-Q, Ding S-J, Wei Zhang D 2014 Appl. Phys. Lett. 104 161602

    [38]

    Fang Z, Solovyev I V, Terakura K 2000 Phys. Rev. Lett. 84 3169

  • [1] 钱涛, 徐涛. 铁电PbTiO3中的多铁性Aurivillius型界面的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250406
    [2] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231979
    [3] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201287
    [4] 李永宁, 谢逸群, 王音. 二维铁电In2Se3/InSe垂直异质结能带的应力调控. 物理学报, doi: 10.7498/aps.70.20211158
    [5] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20191799
    [6] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20201231
    [7] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究. 物理学报, doi: 10.7498/aps.69.20200080
    [8] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20191246
    [9] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190575
    [10] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20182266
    [11] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.187101
    [12] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, doi: 10.7498/aps.63.207301
    [13] 陈龙天, 程用志, 聂彦, 龚荣洲. 人工异向介质调控电磁波极化特性的实验与仿真研究. 物理学报, doi: 10.7498/aps.61.094203
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, doi: 10.7498/aps.61.227102
    [15] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.59.7961
    [16] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.58.5653
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, doi: 10.7498/aps.58.8002
    [18] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, doi: 10.7498/aps.57.3840
    [19] 顾晓玲, 郭 霞, 吴 迪, 徐丽华, 梁 庭, 郭 晶, 沈光地. GaN基多量子阱发光二极管的极化效应和载流子不均匀分布及其影响. 物理学报, doi: 10.7498/aps.56.4977
    [20] 朱振业, 王 彪, 郑 跃, 王 海, 李青坤, 李晨亮. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究. 物理学报, doi: 10.7498/aps.56.5986
计量
  • 文章访问数:  20
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-24

/

返回文章
返回