Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application

Jin Dong-Yue Cao Lu-Ming Wang You Jia Xiao-Xue Pan Yong-An Zhou Yu-Xin Lei Xin Liu Yuan-Yuan Yang Ying-Qi Zhang Wan-Rong

Citation:

Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application

Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong
cstr: 32037.14.aps.71.20211700
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As one of the key components in the non-volatile full adder (NV-FA), spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction (STT assisted VCMA-MTJ) will possess superior development prospects in internet of things, artificial intelligence and other fields due to its fast switching speed, low power consumption and good stability. However, with the downscaling of magnetic tunnel junction (MTJ) and the improvement of chip integration, the effects of process deviation on the performances of MTJ device as well as NV-FA circuit become more and more important. Based on the magnetization dynamics of STT assisted VCMA-MTJ, a new electrical model of STT assisted VCMA-MTJ, in which the effects of the film growth variation and the etching variation are taken into account, is established to study the effects of the above deviations on the performances of MTJ device and NV-FA circuit. It is shown that the MTJ state fails to be switched under the free layer thickness deviation γtf ≥ 6% or the oxide layer thickness deviation γtox ≥ 0.7%. The sensing margin (SM) is reduced by 17.5% as the tunnel magnetoresistance ratio deviation β increases to 30%. The writing error rate can be effectively reduced by increasing Vb1, and increasing Vb2 when writing ‘0’ or reducing Vb2 when writing ‘1’ in the NV-FA circuit. The output error rate can also be effectively reduced by increasing the driving voltage of logical operation Vdd.
      Corresponding author: Zhang Wan-Rong, wrzhang@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059, 61774012, 61901010), Natural Science Foundation of Beijing, China (Grant Nos. 4143059, 4192014, 4204092), Beijing Municipal Education Committee Project, China (Grant No. KM201710005027), Postdoctoral Science Foundation of Beijing, China (Grant No. 2015ZZ-11), China Postdoctoral Science Foundation (Grant Nos. 2015M580951, 2019M650404), and Beijing Future Chip Technology High-tech Innovation Center Scientific Research Fund, China (Grant No. KYJJ2016008).
    [1]

    Verma G 2020 Global Conference on Wireless and Optical Technologies (GCWOT) Malaga, Spain, October 6–8, 2020 p1

    [2]

    Deng E Y, Zhang Y, Klein J O, Ravelsona D, Chappert C, Zhao W S 2013 IEEE Trans. Magn. 49 4982Google Scholar

    [3]

    Cai H, Jiang H L, Han M L, Wang Z H, Wang Y, Yang J, Han J, Liu L B, Zhao W S 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Miami, USA, July 1, 2019 p111

    [4]

    Shreya S, Jain A, Kaushik B K 2020 Microelectron. J. 109 104943Google Scholar

    [5]

    Roohi A, Zand R, Fan D, DeMara R F 2017 IEEE Trans. Comput. AD. D. 36 2134Google Scholar

    [6]

    Sharmin S, Jaiswal A, Roy K 2016 IEEE Trans. Electron. Devices 63 3493Google Scholar

    [7]

    Wang Y, Cai H, Naviner L, Zhang Y, Zhao X X, Deng E Y, Klein J O, Zhao W S 2016 IEEE Trans. Electron. Devices 63 1762Google Scholar

    [8]

    Long M Z, Zeng L, Gao T Q, Zhang D M, Qin X W, Zhang Y G, Zhao W S 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [9]

    Kanai S, Nakatani Y, Yamanouchi M, Ikeda S, Sato H, Matsukura F, Ohno H 2014 Appl. Phys. Lett. 104 212406Google Scholar

    [10]

    Zarei A, Safaei F 2018 Microelectron. J. 82 62Google Scholar

    [11]

    Wang Y, Cai H, Naviner L, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [12]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [13]

    Chun S W, Kim D, Kwon J 2012 J. Appl. Phys. 111 07C722Google Scholar

    [14]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [15]

    Ji M H, Pan L, Hu Y G, Pan M C, Yang L, Peng J P, Qiu W C, Hu J F, Zhang Q, Li P S 2019 AIP Adv. 9 085317Google Scholar

    [16]

    Amiri P K, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Grezes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [17]

    Liu Y W, Zhang Z Z 2013 Sci. China Phys. Mech. 56 184Google Scholar

    [18]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E V 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [19]

    Zhao W S, Zhao X X, Zhang B Y, Cao K H, Wang L Z, Kang W, Shi Q, Wang M X, Zhang Y, Wang Y, Peng S Z, Klein J O, Naviner L, Ravelosona D 2016 Materals 9 41Google Scholar

    [20]

    Kang W, Ran Y, Zhang Y G, Lv W F, Zhao W S 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [21]

    Brinkman W F, Dynes R C, Rowell J M 1970 J. Appl. Phys. 41 1915Google Scholar

    [22]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [23]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’Sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J 2012 Appl. Phys. Lett. 100 132408Google Scholar

    [24]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [25]

    Wu L Z, Taouil M, Rao S, Marinissen E J, Hamdioui S 2018 IEEE International Test Conference (ITC) Phoenix, USA, October 29–November 1, 2018 p18412682

    [26]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H, Nitayama A 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [27]

    Kinoshita K, Utsumi H, Suemitsu K, Hada H, Sugibayashi T 2010 Jpn. J. Appl. Phys. 49 08JB02Google Scholar

    [28]

    Kinoshita K, Yamamoto T, Honjo H, Kasai N, Ikeda S, Ohno H 2012 Jpn. J. Appl. Phys. 51 08HA01Google Scholar

    [29]

    Deng E Y, Wang Y, Wang Z H, Klein J O, Dieny B, Prenat G, Zhao W S 2015 Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures Boston, USA, July 8–10, 2015 p27

    [30]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June 8–13, 2008 p278

    [31]

    Cai H, Wang Y, Naviner L, Zhao W S 2017 IEEE T. Circuits-I 64 847Google Scholar

  • 图 1  STT辅助VCMA-MTJ结构示意图

    Figure 1.  Schematic structure of the STT assisted VCMA-MTJ device.

    图 2  VCMA效应示意图

    Figure 2.  Schematic illustration of the VCMA effect.

    图 3  P态切换到AP态时STT辅助VCMA-MTJ磁化动力学示意图

    Figure 3.  Illustration of magnetization dynamics when STT assisted VCMA-MTJ switches from P state to AP state.

    图 4  AP态切换到P态时STT辅助VCMA-MTJ磁化动力学示意图

    Figure 4.  Illustration of magnetization dynamics when STT assisted VCMA-MTJ switches from AP state to P state.

    图 5  Vb1, Vb2γtf对STT辅助VCMA-MTJ状态切换的影响, 其中插图是Vb的设置

    Figure 5.  Effects of Vb1, Vb2 and γtf on the state switching of STT assisted VCMA-MTJ, in which the inset represents the setting of Vb.

    图 6  γtox对STT辅助VCMA-MTJ状态切换的影响, 其中插图是Vb的设置

    Figure 6.  Effect of γtox on the state switching of STT assisted VCMA-MTJ, in which the inset represents the setting of Vb.

    图 7  不同β下, SM随TMR的变化

    Figure 7.  SM versus TMR with different β.

    图 8  NV-FA电路

    Figure 8.  Circuit of NV-FA.

    图 9  NV-FA写电路仿真波形

    Figure 9.  Simulation waveform of the writing circuit of NV-FA.

    图 10  NV-FA仿真波形

    Figure 10.  Simulation waveform of NV-FA.

    图 11  STT辅助VCMA-MTJ写电路的蒙特卡罗仿真波形 (a)写‘0’; (b)写‘1’

    Figure 11.  Monte Carlo simulation waveform of the writing circuit of STT assisted VCMA-MTJ: (a) Writing ‘0’; (b) writing ‘1’.

    图 12  写入错误率随Vb1Vb2的变化 (a)写‘0’的错误率; (b)写‘1’的错误率

    Figure 12.  Writing error rate versus Vb1 and Vb2: (a) Writing ‘0’; (b) writing ‘1’.

    图 13  NV-FA的蒙特卡罗仿真波形, 其中n = 100, 3σ/μ = 0.03, Vdd = 1.0 V

    Figure 13.  Monte Carlo simulation waveform of NV-FA with n = 100, 3σ/μ = 0.03, Vdd = 1.0 V.

    图 14  不同信号下错误率随Vdd的变化 (a) Sum错误率; (b) Co错误率

    Figure 14.  Error rate versus Vdd under different signals: (a) Error rate of Sum; (b) error rate of Co.

    图 15  两款NV-FA输出错误率随Vdd变化情况的比较

    Figure 15.  The sensing error rate versus Vdd in two types of NV-FA.

    表 1  STT辅助VCMA-MTJ电学模型部分参数列表

    Table 1.  Partial parameters of the STT assisted VCMA-MTJ model.

    参数符号
    自由层厚度标准值tf1.1 nm
    氧化层厚度标准值tox1.4 nm
    MTJ横截面直径d50 nm
    Gilbert阻尼系数α0.05
    STT极化因子P0.58
    饱和磁化强度Ms0.625 × 106 A/m
    垂直磁各向异性系数Ki0.32 mJ/m2
    VCMA系数ξ60 fJ/(V·m)
    氧化层势垒高度$ \bar \varphi $0.4 eV
    隧穿磁阻率标准值TMR100%
    外磁场在x轴分量Hx31830 A/m
    x, y轴退磁因子Nx, y0.0168
    z轴退磁因子Nz0.966
    旋磁比γ2.21 × 105 m/(A·s)
    拟合系数F11.2727 (m·Ω·eV1/2)–1
    拟合因子Ce1.025 (m·eV1/2)–1
    DownLoad: CSV
  • [1]

    Verma G 2020 Global Conference on Wireless and Optical Technologies (GCWOT) Malaga, Spain, October 6–8, 2020 p1

    [2]

    Deng E Y, Zhang Y, Klein J O, Ravelsona D, Chappert C, Zhao W S 2013 IEEE Trans. Magn. 49 4982Google Scholar

    [3]

    Cai H, Jiang H L, Han M L, Wang Z H, Wang Y, Yang J, Han J, Liu L B, Zhao W S 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) Miami, USA, July 1, 2019 p111

    [4]

    Shreya S, Jain A, Kaushik B K 2020 Microelectron. J. 109 104943Google Scholar

    [5]

    Roohi A, Zand R, Fan D, DeMara R F 2017 IEEE Trans. Comput. AD. D. 36 2134Google Scholar

    [6]

    Sharmin S, Jaiswal A, Roy K 2016 IEEE Trans. Electron. Devices 63 3493Google Scholar

    [7]

    Wang Y, Cai H, Naviner L, Zhang Y, Zhao X X, Deng E Y, Klein J O, Zhao W S 2016 IEEE Trans. Electron. Devices 63 1762Google Scholar

    [8]

    Long M Z, Zeng L, Gao T Q, Zhang D M, Qin X W, Zhang Y G, Zhao W S 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [9]

    Kanai S, Nakatani Y, Yamanouchi M, Ikeda S, Sato H, Matsukura F, Ohno H 2014 Appl. Phys. Lett. 104 212406Google Scholar

    [10]

    Zarei A, Safaei F 2018 Microelectron. J. 82 62Google Scholar

    [11]

    Wang Y, Cai H, Naviner L, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [12]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [13]

    Chun S W, Kim D, Kwon J 2012 J. Appl. Phys. 111 07C722Google Scholar

    [14]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [15]

    Ji M H, Pan L, Hu Y G, Pan M C, Yang L, Peng J P, Qiu W C, Hu J F, Zhang Q, Li P S 2019 AIP Adv. 9 085317Google Scholar

    [16]

    Amiri P K, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Grezes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [17]

    Liu Y W, Zhang Z Z 2013 Sci. China Phys. Mech. 56 184Google Scholar

    [18]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E V 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [19]

    Zhao W S, Zhao X X, Zhang B Y, Cao K H, Wang L Z, Kang W, Shi Q, Wang M X, Zhang Y, Wang Y, Peng S Z, Klein J O, Naviner L, Ravelosona D 2016 Materals 9 41Google Scholar

    [20]

    Kang W, Ran Y, Zhang Y G, Lv W F, Zhao W S 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [21]

    Brinkman W F, Dynes R C, Rowell J M 1970 J. Appl. Phys. 41 1915Google Scholar

    [22]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [23]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’Sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J 2012 Appl. Phys. Lett. 100 132408Google Scholar

    [24]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [25]

    Wu L Z, Taouil M, Rao S, Marinissen E J, Hamdioui S 2018 IEEE International Test Conference (ITC) Phoenix, USA, October 29–November 1, 2018 p18412682

    [26]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H, Nitayama A 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [27]

    Kinoshita K, Utsumi H, Suemitsu K, Hada H, Sugibayashi T 2010 Jpn. J. Appl. Phys. 49 08JB02Google Scholar

    [28]

    Kinoshita K, Yamamoto T, Honjo H, Kasai N, Ikeda S, Ohno H 2012 Jpn. J. Appl. Phys. 51 08HA01Google Scholar

    [29]

    Deng E Y, Wang Y, Wang Z H, Klein J O, Dieny B, Prenat G, Zhao W S 2015 Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures Boston, USA, July 8–10, 2015 p27

    [30]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June 8–13, 2008 p278

    [31]

    Cai H, Wang Y, Naviner L, Zhao W S 2017 IEEE T. Circuits-I 64 847Google Scholar

Metrics
  • Abstract views:  6960
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2021
  • Accepted Date:  09 January 2022
  • Available Online:  10 February 2022
  • Published Online:  20 May 2022
  • /

    返回文章
    返回