搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基分子磁隧道结的设计和自旋输运性质研究

邸茂云 李鹏乐 付林 许永杰 李瑾 邝亚飞 胡季帆

引用本文:
Citation:

碳基分子磁隧道结的设计和自旋输运性质研究

邸茂云, 李鹏乐, 付林, 许永杰, 李瑾, 邝亚飞, 胡季帆

The design and spin-dependent transport properties of the carbon-based molecular magnetic tunnel junctions

DI Maoyun, LI Pengle, FU Lin, XU Yongjie, LI Jin, KUANG Yafei, HU Jifan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 分子磁隧道结作为一种新型磁隧道结,在提升器件的隧道磁阻和优化双自旋过滤效应方面具有独特优势。通过裁剪6,6,12-石墨炔获得纳米点,并与锯齿型石墨烯纳米带组合设计了两类纯碳基分子磁隧道结。利用密度泛函理论和非平衡格林函数相结合的方法计算了基于6,6,12-石墨炔分子磁隧道结器件的自旋相关输运性质。结果表明,两类器件都获得了巨大的隧道磁阻值,其最高数值可达到109%量级。此外,两类器件都获得了完美的双自旋过滤效应。对于中心纳米点为六元终端的这类分子磁隧道结,其自旋过滤效应除了可以通过偏压实现调控,还可以通过外磁场改变电极的磁化方向有效调控,从而具备双场调控的特性,这在实际应用中具有更广泛的适用性。值得注意的是,中心纳米点是六元环终端的分子磁隧道结中电子态密度非常小,使其工作电流低至10 pA量级,这在降低器件功耗方面具有重要优势。这些有趣的现象表明,基于6,6,12-GY的纯碳基分子磁隧道结在未来自旋电子器件中具有潜在的应用价值。
    Spintronics holds profound significance for the development of future electronic devices, among which magnetic tunnel junctions (MTJs) represent a crucial spintronic device. Intending to achieve excellent performance, e.g., higher tunnel magnetoresistance (TMR) and spin filtering effects, researchers have focused on molecular MTJs (MMTJs). Here, we adopt 6,6,12-graphyne (6,6,12-GY) nanodots as the barrier material in the central scattering region, while zigzag-edged graphene nanoribbons (ZGNRs) are chosen as electrode materials. Two kinds of devices labeled as M1n and M2n are constructed, which differ in the termination of the nanodots in the central scattering region. Since the magnetization directions of the two ZGNRs electrodes can be arranged either parallel (P) or antiparallel (AP), both M1n and M2n devices exhibit two distinct magnetic configurations. In this paper, the structures were optimized using first-principles calculations based on density functional theory (DFT), as implemented in the Vienna Ab-initio Simulation Package (VASP). By combining DFT with the nonequilibrium Green’s function (NEGF) method, we studied the spin transport properties of MMTJs.
    The calculated results show that high TMR effects are obtained in both kinds of devices, with the values reaching up to 108% in M1n and 109% in M2n. The total current calculations indicate that a distinct difference emerges between the P and AP configurations after applying a bias voltage, which leads to the superior TMR. These findings provide valuable insights for the development of highly sensitive spintronic devices in the future. From the perspective of spin current, it can be observed that for both M1n and M2n devices with AP configuration, opposite-direction spin currents can be obtained by applying positive or negative bias voltage. Namely, in the AP configuration, both devices achieve the ±100% spin polarization (SP), indicating a dual spin filtering effect. In the P configuration, the spin-up and spin-down currents in M1n exhibit similar trends with the increasing bias, while M2n can produce a pure spindown current as the number of nanodots increases. The 100% spin filtering efficiency achieved in these carbon-based devices holds significant implications for increasing the storage density and operation speed of future spintronic devices. Notably, apart from the bias voltage, the spin current of M2n could also be controlled by switching the magnetization direction of the electrodes. In addition, the current in M2n is much smaller than that in M1n, which implies low consumption in device applications. Our investigation on the spin-dependent transport properties of 6,6,12-GY-based MMTJs paves the way for the promising spintronic applications of carbon-based materials.
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S von, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Cheng H, Liu Z, Yao K 2011 Appl. Phys. Lett. 98 172107

    [3]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2016 Carbon 98 204

    [4]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J-C, Martin M-B, Dlubak B, Seneor P 2022 ACS Nano 16 14007

    [5]

    Han Z, Hao H, Zheng X, Zeng Z 2023 Phys. Chem. Chem. Phys. 25 6461

    [6]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868

    [7]

    Dai J-Q 2016 J. Appl. Phys. 120 074102

    [8]

    Hu L, Wu X, Feng Y, Liu Y, Xu Z, Gao G 2022 Nanoscale 14 7891

    [9]

    Li J, Xu L-C, Yang Y, Liu X, Yang Z 2018 Carbon 132 632

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [11]

    Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K 2018 Chem. Soc. Rev. 47 3059

    [12]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571

    [13]

    Son Y-W, Cohen M L, Louie S G. 2006 Nature 444 347

    [14]

    Rao S S, Jammalamadaka S N, Stesmans A, Moshchalkov V V, Tol J v, Kosynkin D V, Higginbotham-Duque A, Tour J M 2012 Nano Lett. 12 1210

    [15]

    Baughman R H, Eckhardt H, Kertesz M. 1987 J. Chem. Phys. 87 6687

    [16]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804

    [17]

    Wang T-H, Li A, Han B 2019 Acta Phys. Sin. 68 187102(in Chinese)[王天会, 李昂, 韩柏 2019 物理学报 68 187102]

    [18]

    Cao L, Li X, Jia C, Liu G, Liu Z, Zhou G 2018 Carbon 127 519

    [19]

    Li J, Yang Z, Xu L, Yang Y, Liu X 2019 ‌J. Mater. Chem. C‌ 7 1359

    [20]

    Kresse G, Joubert D1999 Phys. Rev. B 59 1758

    [21]

    Perdew J P, Burke K, Ernzerhof M1996 Phys. Rev. Lett. 77 3865

    [22]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [23]

    Zheng X, Chen M, Xie Y 2022 Phys. Chem. Chem. Phys. 24 24328

    [24]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862

    [25]

    Iqbal M Z, Hussain G, Siddique S, Iqbal M W 2017 J. Magn. Magn. Mater. 441 39

    [26]

    Yamaguchi D, Kitaori A, Nagaosa N, Tokura Y 2025 Adv. Mater. 37 2420614

    [27]

    Ishizuka H, Nagaosa N 2020 Nat. Commun. 11 2986

    [28]

    Feng Y, Liu N, Gao G 2021 Appl. Phys. Lett. 118 112407

    [29]

    Li Y, Ma Z, Song X, Yang Z, Xu L-C, Liu R, Li X, Liu X, Hu D 2017 Comput. Mater. Sci. 136 1

    [30]

    Gao Y, Xu L, Li A, Ouyang F 2023 Results Phys. 46 106315

    [31]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422

    [32]

    Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J Mater. Chem. C 2 6648

  • [1] 李晓波, 刘帅奇, 黄演, 马玉, 丁文策. 卤素及含氧元素掺杂对α-2-石墨炔纳米带的负微分电阻效应与自旋过滤效应的调控. 物理学报, doi: 10.7498/aps.74.20241518
    [2] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, doi: 10.7498/aps.70.20201408
    [3] 陈兴, 赵晗, 张艳, 刘露, 杨志宏, 宋玲玲. 具有连续反量子点的石墨烯纳米带中纯自旋流的实现. 物理学报, doi: 10.7498/aps.70.20210242
    [4] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究. 物理学报, doi: 10.7498/aps.70.20201905
    [5] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, doi: 10.7498/aps.68.20181754
    [6] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, doi: 10.7498/aps.68.20190859
    [7] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, doi: 10.7498/aps.68.20190817
    [8] 刘娜, 胡边, 魏鸿鹏, 刘红. 锯齿型石墨烯纳米窄带中量子霍尔体系的电场调控. 物理学报, doi: 10.7498/aps.67.20180249
    [9] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, doi: 10.7498/aps.66.246101
    [10] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, doi: 10.7498/aps.65.227302
    [11] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质. 物理学报, doi: 10.7498/aps.65.016101
    [12] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, doi: 10.7498/aps.65.068503
    [13] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, doi: 10.7498/aps.63.117102
    [14] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态. 物理学报, doi: 10.7498/aps.62.067301
    [15] 胡飞, 段玲, 丁建文. 锯齿型石墨纳米带叠层复合结的电子输运. 物理学报, doi: 10.7498/aps.61.077201
    [16] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, doi: 10.7498/aps.61.177202
    [17] 张嵛, 刘连庆, 焦念东, 席宁, 王越超, 董再励. 锯齿型石墨烯带缺陷改性方法研究. 物理学报, doi: 10.7498/aps.61.137101
    [18] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究. 物理学报, doi: 10.7498/aps.61.047106
    [19] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, doi: 10.7498/aps.60.097301
    [20] 王雪梅, 刘红. 锯齿型石墨烯纳米带的能带研究. 物理学报, doi: 10.7498/aps.60.047102
计量
  • 文章访问数:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-09

/

返回文章
返回