-
分子磁隧道结作为一种新型磁隧道结,在提升器件的隧道磁阻和优化双自旋过滤效应方面具有独特优势。通过裁剪6,6,12-石墨炔获得纳米点,并与锯齿型石墨烯纳米带组合设计了两类纯碳基分子磁隧道结。利用密度泛函理论和非平衡格林函数相结合的方法计算了基于6,6,12-石墨炔分子磁隧道结器件的自旋相关输运性质。结果表明,两类器件都获得了巨大的隧道磁阻值,其最高数值可达到109%量级。此外,两类器件都获得了完美的双自旋过滤效应。对于中心纳米点为六元终端的这类分子磁隧道结,其自旋过滤效应除了可以通过偏压实现调控,还可以通过外磁场改变电极的磁化方向有效调控,从而具备双场调控的特性,这在实际应用中具有更广泛的适用性。值得注意的是,中心纳米点是六元环终端的分子磁隧道结中电子态密度非常小,使其工作电流低至10 pA量级,这在降低器件功耗方面具有重要优势。这些有趣的现象表明,基于6,6,12-GY的纯碳基分子磁隧道结在未来自旋电子器件中具有潜在的应用价值。
-
关键词:
- 6,6,12-石墨炔纳米点 /
- 锯齿型石墨烯纳米带 /
- 隧穿磁阻效应 /
- 自旋过滤效
Spintronics holds profound significance for the development of future electronic devices, among which magnetic tunnel junctions (MTJs) represent a crucial spintronic device. Intending to achieve excellent performance, e.g., higher tunnel magnetoresistance (TMR) and spin filtering effects, researchers have focused on molecular MTJs (MMTJs). Here, we adopt 6,6,12-graphyne (6,6,12-GY) nanodots as the barrier material in the central scattering region, while zigzag-edged graphene nanoribbons (ZGNRs) are chosen as electrode materials. Two kinds of devices labeled as M1n and M2n are constructed, which differ in the termination of the nanodots in the central scattering region. Since the magnetization directions of the two ZGNRs electrodes can be arranged either parallel (P) or antiparallel (AP), both M1n and M2n devices exhibit two distinct magnetic configurations. In this paper, the structures were optimized using first-principles calculations based on density functional theory (DFT), as implemented in the Vienna Ab-initio Simulation Package (VASP). By combining DFT with the nonequilibrium Green’s function (NEGF) method, we studied the spin transport properties of MMTJs.
The calculated results show that high TMR effects are obtained in both kinds of devices, with the values reaching up to 108% in M1n and 109% in M2n. The total current calculations indicate that a distinct difference emerges between the P and AP configurations after applying a bias voltage, which leads to the superior TMR. These findings provide valuable insights for the development of highly sensitive spintronic devices in the future. From the perspective of spin current, it can be observed that for both M1n and M2n devices with AP configuration, opposite-direction spin currents can be obtained by applying positive or negative bias voltage. Namely, in the AP configuration, both devices achieve the ±100% spin polarization (SP), indicating a dual spin filtering effect. In the P configuration, the spin-up and spin-down currents in M1n exhibit similar trends with the increasing bias, while M2n can produce a pure spindown current as the number of nanodots increases. The 100% spin filtering efficiency achieved in these carbon-based devices holds significant implications for increasing the storage density and operation speed of future spintronic devices. Notably, apart from the bias voltage, the spin current of M2n could also be controlled by switching the magnetization direction of the electrodes. In addition, the current in M2n is much smaller than that in M1n, which implies low consumption in device applications. Our investigation on the spin-dependent transport properties of 6,6,12-GY-based MMTJs paves the way for the promising spintronic applications of carbon-based materials.-
Keywords:
- 6,6,12-graphyne /
- zigzag graphene nanoribbons /
- tunneling magnetoresistance effect /
- spin filtering effect
-
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S von, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
[2] Cheng H, Liu Z, Yao K 2011 Appl. Phys. Lett. 98 172107
[3] Wang D, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2016 Carbon 98 204
[4] Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J-C, Martin M-B, Dlubak B, Seneor P 2022 ACS Nano 16 14007
[5] Han Z, Hao H, Zheng X, Zeng Z 2023 Phys. Chem. Chem. Phys. 25 6461
[6] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868
[7] Dai J-Q 2016 J. Appl. Phys. 120 074102
[8] Hu L, Wu X, Feng Y, Liu Y, Xu Z, Gao G 2022 Nanoscale 14 7891
[9] Li J, Xu L-C, Yang Y, Liu X, Yang Z 2018 Carbon 132 632
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[11] Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K 2018 Chem. Soc. Rev. 47 3059
[12] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571
[13] Son Y-W, Cohen M L, Louie S G. 2006 Nature 444 347
[14] Rao S S, Jammalamadaka S N, Stesmans A, Moshchalkov V V, Tol J v, Kosynkin D V, Higginbotham-Duque A, Tour J M 2012 Nano Lett. 12 1210
[15] Baughman R H, Eckhardt H, Kertesz M. 1987 J. Chem. Phys. 87 6687
[16] Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804
[17] Wang T-H, Li A, Han B 2019 Acta Phys. Sin. 68 187102(in Chinese)[王天会, 李昂, 韩柏 2019 物理学报 68 187102]
[18] Cao L, Li X, Jia C, Liu G, Liu Z, Zhou G 2018 Carbon 127 519
[19] Li J, Yang Z, Xu L, Yang Y, Liu X 2019 J. Mater. Chem. C 7 1359
[20] Kresse G, Joubert D1999 Phys. Rev. B 59 1758
[21] Perdew J P, Burke K, Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[22] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207
[23] Zheng X, Chen M, Xie Y 2022 Phys. Chem. Chem. Phys. 24 24328
[24] Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862
[25] Iqbal M Z, Hussain G, Siddique S, Iqbal M W 2017 J. Magn. Magn. Mater. 441 39
[26] Yamaguchi D, Kitaori A, Nagaosa N, Tokura Y 2025 Adv. Mater. 37 2420614
[27] Ishizuka H, Nagaosa N 2020 Nat. Commun. 11 2986
[28] Feng Y, Liu N, Gao G 2021 Appl. Phys. Lett. 118 112407
[29] Li Y, Ma Z, Song X, Yang Z, Xu L-C, Liu R, Li X, Liu X, Hu D 2017 Comput. Mater. Sci. 136 1
[30] Gao Y, Xu L, Li A, Ouyang F 2023 Results Phys. 46 106315
[31] Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422
[32] Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J Mater. Chem. C 2 6648
计量
- 文章访问数: 24
- PDF下载量: 3
- 被引次数: 0