搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧空位调控的HfOX忆阻器稳定性研究

朱媛媛 杨梓怡 杨淑宁 张云飞 张苗 王鑫 王红军 徐静

引用本文:
Citation:

基于氧空位调控的HfOX忆阻器稳定性研究

朱媛媛, 杨梓怡, 杨淑宁, 张云飞, 张苗, 王鑫, 王红军, 徐静

Research on the Stability of HfOX Memristors Based on Oxygen Vacancy Regulation

ZHU Yuanyuan, YANG Ziyi, YANG Shuning, ZHANG Yunfei, ZHANG Miao, WANG Xin, WANG Hongjun, XU Jing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • HfOX忆阻器因其低操作电压、良好的耐受性及循环特性等优异性能,使其成为下一代非易失性存储器最有前景的候选者之一。然而,由于HfOX薄膜内氧空位导电细丝的形成和断裂的随机性,器件阈值电压分布较为分散,整体稳定性较差,因此,通过调控氧空位来提高HfOX器件的稳定性具有重要的研究意义。本研究采用磁控溅射法制备了不同氩氧比的三组器件,均表现出双极性阻变特性。在三种不同氩氧比的W/HfOX/Pt器件中,氩氧比为45:5的器件展现出最优的综合性能: I-V循环超过200次、开关比~103、在104 s内具有优异的数据保持特性且阈值电压分布集中,表明器件稳定性显著提高。通过构建氧空位调控与导电细丝演变的物理模型,揭示了氧空位浓度对阻变机理的影响机制。本研究明确了氧空位的调控HfOX忆阻器性能的关键作用,为发展高性能、高可靠性的阻变存储器提供了有效途径。
    HfOX memristors have emerged as one of the most promising candidates for next-generation non-volatile memory due to their low operating voltage, excellent endurance, and cycling characteristics. However, the randomness in the formation and rupture of oxygen vacancy conductive filaments within HfOX thin films leads to a relatively dispersed threshold voltage distribution and poor stability. Therefore, improving the stability of HfOX devices by modulating oxygen vacancies is of significant research importance. In this study, three groups of W/HfOX/Pt devices were prepared using magnetron sputtering with argon-to-oxygen ratios of 30:20, 40:10 and 45:5, respectively. XPS results indicated that the 45:5 device has the highest oxygen vacancy concentration(25.59%). All three groups exhibited bipolar resistive switching behavior. Among the three W/HfOX/Pt devices, the device with argon-to-oxygen ratio of 45:5 demonstrated the best overall performance: over 200 I-V cycles, a switching ratio of ~103, excellent data retention within 104 seconds, and a concentrated threshold voltage distribution. Analysis of the conduction mechanisms revealed that the device follows a space-charge-limited current (SCLC) mechanism in the high-resistance state and exhibits Ohmic conduction behavior in the low-resistance state. In the initial state, there is a high density of oxygen vacancies near the nucleation region of the conductive filament, which shortens the effective migration path of oxygen vacancies. Under an applied electric field, negatively charged oxygen ions migrate toward the top electrode, while oxygen vacancies gradually accumulate from the bottom electrode to the top electrode, leading to the formation of continuous conductive filaments. A higher oxygen vacancy concentration facilitates the development of robust and structurally more stable conductive filaments, thereby enhancing the uniformity of resistive switching and device reliability. This study reveals the critical role of oxygen vacancy modulation in the performance of HfOX memristors and provides an effective pathway for developing high-performance and highly reliable resistive random-access memory.
  • [1]

    Tang K, Wang Y, Gong C H, Yin C J, Zhang M, Wang X F, Xiong J 2022 Adv. Electron. Mater. 8 2101099

    [2]

    Cao D W, Yan Y, Wang M N, Luo G L, Zhao J R, Zhi J K, Xia C X, Liu Y F 2024 Adv. Funct. Mater. 34 2314649

    [3]

    Zhang Y, Mao G Q, Zhao X L, Li Y, Zhang M Y, Wu Z H, Wu W, Sun H J, Guo Y Z, Wang L H, Zhang X M, Liu Q, Lv H B, Xue K H, Xu G W, Miao X S, Long S B, Liu M 2021 Nat. Commun. 12 7232

    [4]

    Zhang G B, Fan X M, Wang J, Wang Z J, Zhang Z J, Li P T, Ma Y T, Huang K J, Yu B, Wan Q, Miao X S, Zhang Y S 2025 Nat. Commun. 16 5759

    [5]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H 2020 Nature 577 641

    [6]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese)[刘东青,程海峰,朱玄,王楠楠,张朝阳 2014 物理学报 63 187301]

    [7]

    Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 eabj9979

    [8]

    Sun T Y, Qin Z B, Yu F T, Gao S, Wangyang P H, Tang X S, Li H O, Zhang F B, Xu Z M, Cai P, Jiang C S, Xue X G 2025 Appl. Surf. Sci. 679 161150

    [9]

    Wang L, Zhu H Y, Zuo Z, Wen D Z 2023 Adv. Electron. Mater. 9 2201032

    [10]

    Hota M K, Pazos S, Lanza M, Alshareef H N 2025 Mater. Sci. Eng. R Rep. 164 100983

    [11]

    Gong S K, Zhou J, Wang Z Q, Zhu M C, Shen J, Wu Z, Chen W 2021 Acta Phys. Sin. 70 197301(in Chinese)[龚少康,周静,王志青,朱茂聪,沈杰,吴智,陈文 2021 物理学报 70 197301]

    [12]

    Yang Y F, Xu M K, Jia S J, Wang B L, Xu L J, Wang X X, Liu H, Liu Y S, Guo Y Z, Wang L D, Duan S K, Liu K, Zhu M, Pei J, Duan W R, Liu D M, Li H L 2021 Nat. Commun. 12 6081

    [13]

    Chen L, He Z L, Li C D, Wen S P, Chen Y R 2020 Int. J. Bifurcat. Chaos 30 2050172

    [14]

    Zhou G D, Wang Z R, Sun B, Zhou F C, Sun L F, Zhao H B, Hu X F, Peng X Y, Yan J, Wang H M, Wang W H, Li J, Yan B T, Kuang D L, Wang Y C, Wang L D, Duan S K 2022 Adv. Electron. Mater. 8 2101127

    [15]

    Zhang H Z, Xu C Y, Nan H Y, Xiao S Q, Gu X F 2020 Acta Phys. Sin. 69 246101 (in Chinese)[张浩哲,徐春燕,南海燕,肖少庆,顾晓峰 2020 物理学报 69 246101]

    [16]

    Rusevich L L, Tyunina M, Kotomin E A, Nepomniashchaia N, Dejneka A 2021 Sci. Rep. 11 23341

    [17]

    Zhang B, Fan F, Xue W H, Liu G, Fu Y B, Zhuang X D, Xu X H, Gu J W, Li R W, Chen Y 2019 Nat. Commun. 10 736

    [18]

    Teja Nibhanupudi S S, Roy A, Veksler D, Coppin M, Matthews K C, Disiena M, Ansh, Singh J V, Gearba-Dolocan I R, Warner J, Kulkarni J P, Bersuker G, Banerjee S K 2024 Nat. Commun. 15 2334

    [19]

    Chen S C, Yang Z, Hartmann H, Besmehn A, Yang Y C, Valov I 2025 Nat. Commun. 16 2348

    [20]

    Hua P, Ning D 2014 Chin. Phys. Lett. 31 107303

    [21]

    Wang W X, Yin F F, Niu H S, Li Y, Kim E S, Kim N Y 2023 Nano Energy 106 108072

    [22]

    Wu M C, Chen J Y, Ting Y H, Huang C Y, Wu W W 2021 Nano Energy 82 105717

    [23]

    Tao Y, Wang Z Q, Xu H Y, Ding W T, Zhao X N, Lin Y, Liu Y C 2020 Nano Energy 71 104628

    [24]

    Bai J, Xie W W, Zhang W Q, Yin Z P, Wei S S, Qu D H, Li Y, Qin F W, Zhou D Y, Wang D J 2022 Appl. Surf. Sci. 600 154084

    [25]

    Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575

    [26]

    Wang Y, Huang H X, Huang X L, Guo T T 2023 Acta Phys. Sin. 72 197201(in Chinese)[王英,黄慧香,黄香林,郭婷婷 2023 物理学报 72 197201]

    [27]

    Hah J, West M P, Athena F F, Hanus R, Vogel E M, Graham S 2022 J. Mater. Sci. 57 9299

    [28]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P, Lehmann M, Kleebe H J, Schroeder T, Alff L 2017 Adv. Funct. Mater. 27 1700432

    [29]

    Wei T T, Lu Y Y, Zhang F, Tang J S, Gao B, Yu P, Qian H, Wu H Q 2023 Adv. Mater. 35 2209925

    [30]

    Zhou Q Z, Wang F, Zhao X Y, Hu K, Zhang Y J, Shan X, Lin X, Zhang Y P, Shan K, Zhang K L 2023 J. Intell. Fuzzy Syst. 45 5159

    [31]

    Ran H F, Ren Z J, Li J, Sun B, Wang T Y, Gu D S, Wang W H, Hu X F, Dong Z K, Song Q L, Wang L D, Duan S K, Zhou G D 2025 Adv. Funct. Mater. 35 2418113

    [32]

    Zhang Z Z, Wang F, Hu K, She Y, Song S N, Song Z T, Zhang K L 2021 Materials 14 3330

    [33]

    Yu S M, Chen H Y, Gao B, Kang J F, Wong H S P 2013 ACS Nano 7 2320

    [34]

    Wang C X, Mao G Q, Huang M H, Huang E M, Zhang Z C, Yuan J H, Cheng W M, Xue K H, Wang X S, Miao X S 2022 Adv. Sci. 9 2201446

    [35]

    Kaiser N, Vogel T, Zintler A, Petzold S, Arzumanov A, Piros E, Eilhardt R, Molina-Luna L, Alff L 2022 ACS Appl. Mater. Interfaces 14 1290

    [36]

    Jana B, Roy Chaudhuri A 2024 Chips 3 235

    [37]

    Dai Y H, Pan Z Y, Wang F F, Li X F 2016 AIP Adv. 6 085209

    [38]

    Zhang K N, Ren Y, Ganesh P, Cao Y 2022 Npj Comput. Mater. 8 76

    [39]

    Li S Q, Du J G, Lu J G, Lu B J, Zhuge F, Yang R Q, Lu Y D, Ye Z Z 2022 J. Mater. Chem.C 10 17154

    [40]

    Liu Y H, Zuo Q Y, Sun J Y, Dai J X, Cheng C H, Huang H L 2024 J. Appl. Phys. 135 184502

    [41]

    Shi Q W, Aziz I, Ciou J H, Wang J X, Gao D C, Xiong J Q, Lee P S 2022 Nano-Micro Lett. 14 195

    [42]

    Saka K, Gokcen D, Efkere H I, Bayram C, Ozcelik S 2025 J. Mater. Sci.: Mater. Electron. 36 824

    [43]

    Mahata C, So H, Ju D, Ismail M, Kim S, Hsu C C, Park K, Kim S 2024 Nano Energy 129 110015

    [44]

    Rudrapal K, Biswas M, Jana B, Adyam V, Chaudhuri A R 2023 J. Phys. D: Appl. Phys. 56 205302

    [45]

    Hwang H G, Pyo Y, Woo J U, Kim I S, Kim S W, Kim D S, Kim B, Jeong J, Nahm S 2022 J. Alloys Compd. 902 163764

    [46]

    Yang Y C, Zhang X X, Qin L, Zeng Q B, Qiu X H, Huang R 2017 Nat. Commun. 8 15173

    [47]

    Liu C, Zhang C C, Cao Y Q, Wu D, Wang P, Li A D 2020 J. Mater. Chem. C 8 12478

    [48]

    Fu L P, Liu H Y, Fan X L, Li Y T 2023 Phys. Scr. 98 095017

    [49]

    Hsu C C, Chuang H, Jhang W C 2021 J. Alloys Compd. 882 160758

    [50]

    Wu M C, Jang W Y, Lin C H, Tseng T Y 2012 Semicond. Sci. Technol. 27 065010

    [51]

    Ye Cong, Deng T F, Zhang J C, Shen L P, He P, Wei W, Wang H 2016 Semicond. Sci. Technol. 31 105005

    [52]

    Yan X Y, Wang X T, Xing B R, Yu Y, Yao J D, Niu X Y, Li M G, Sha J, Wang Y W 2020 AIP Adv. 10 075013

    [53]

    Yang C, Wang H Y, Cao Z L, Wang K, Zhou G D, Hou W T, Zhao Y, Sun B 2025 ACS Appl. Mater. Interfaces 17 6550

    [54]

    Wang J Q, Wang H Y, Cao Z L, Zhu S H, Du J M, Yang C, Ke C, Zhao Y, Sun B 2024 Adv. Funct. Mater. 34 2313219

    [55]

    Medvedeva J E, Zhuravlev I A, Burris C, Buchholz D B, Grayson M, Chang R P H 2020 J. Appl. Phys. 127 175701

    [56]

    Zhang D L, Wang J, Wu Q, Du Y 2023 Phys. Chem. Chem. Phys. 25 3521

    [57]

    Aziz J, Kim H, Rehman S, Hur J H, Song Y H, Khan M F, Kim D K 2021 Mater. Res. Bull. 144 111492

    [58]

    Fadeev A V, Rudenko K V 2024 Microelectron. Eng. 289 112179

    [59]

    Boynazarov T, Lee J, Lee H, Lee S, Chung H, Ryu D H, Abbas H, Choi T 2025 J. Mater. Sci. Technol. 227 164

  • [1] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展. 物理学报, doi: 10.7498/aps.72.20222266
    [2] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, doi: 10.7498/aps.72.20230797
    [3] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究. 物理学报, doi: 10.7498/aps.72.20231232
    [4] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, doi: 10.7498/aps.70.20202196
    [5] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, doi: 10.7498/aps.70.20210116
    [6] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, doi: 10.7498/aps.69.20200617
    [7] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, doi: 10.7498/aps.68.20181577
    [8] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, doi: 10.7498/aps.68.20190808
    [9] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, doi: 10.7498/aps.67.20181028
    [10] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, doi: 10.7498/aps.67.20180425
    [11] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明. 基于六角氮化硼二维薄膜的忆阻器. 物理学报, doi: 10.7498/aps.66.217304
    [12] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, doi: 10.7498/aps.64.207302
    [13] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, doi: 10.7498/aps.63.187301
    [14] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究. 物理学报, doi: 10.7498/aps.63.147301
    [15] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, doi: 10.7498/aps.63.123101
    [16] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, doi: 10.7498/aps.63.098402
    [17] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, doi: 10.7498/aps.63.048401
    [18] 李智炜, 刘海军, 徐欣. 忆阻逾渗导电模型中的初态影响. 物理学报, doi: 10.7498/aps.62.096401
    [19] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, doi: 10.7498/aps.62.047201
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-17

/

返回文章
返回