Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability analysis in three-terminal magnetic tunnel junction

Wang Ri-Xing Li Xue Li Lian Xiao Yun-Chang Xu Si-Wei

Citation:

Stability analysis in three-terminal magnetic tunnel junction

Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei
PDF
HTML
Get Citation
  • Spin-transfer torque-based magnetic random access memory is becoming more and more attractive in industry due to its non-volatility, fast switching speed and infinite endurance. However, it suffers energy and speed bottlenecks, so the magnetic tunnel junction urgently needs a new write scheme. Compared with the spin-transfer torque, emerging spin-orbit torque will replace spin-transfer torque as a new write scheme of magnetic storage technology for its faster writing speed and avoiding the barrier breakdown. A three-terminal magnetic tunnel junction consists of magnetic tunnel junction/heavy metal structure offers a promising perspective from a technological point of view in the design of new generation of magnetic random access memory, for it is possible to control the magnetization dynamics through two current densities of spin-transfer torque and the spin-orbit torque. In this paper, the stability of magnetic states in the three-terminal magnetic tunnel junction is studied theoretically. Through linearizing the Landau-Lifshitz-Gilbert equation including the spin-transfer torque and the spin-orbit torque defined in the spherical coordinates, the new equilibrium directions and linear differential equations are obtained. Performing linear stability analysis of the new equilibrium directions, the phase diagrams defined by the direction of pinned-layer magnetization vector and the current density of spin-orbit torque are obtained. Several magnetic states are distinguished in the phase diagram, such as in-plane precessional and stable states, out-of-plane precessional and stable states. When the pinned-layer magnetization vector rotates out of the film plane, through adjusting the direction of pinned-layer magnetization vector, the switching from stable state to precessional one can be realized. Orientating the pinned-layer magnetization vector in the film plane, neither the out-of-plane precession nor stable states emerges for the current density of spin-orbit torque and spin-transfer torque are relatively small. The instability current takes a minimum value with the pinned-layer magnetization vector nearly parallel or antiparallel to the easy axis of free layer and increases with the direction of pinned-layer magnetization vector deviating from these two locations. The magnetization reversal can be realized through adjusting the current density of spin-transfer torque, and the reversal time can decrease greatly under the assisting of spin-orbit torque. By showing the dependence of magnetization vector on the time of different magnetic states, the validity of phase diagram is confirmed. The selecting of the different directions of the pinned-layer magnetization vector provides an alternative way to control the current-driven magnetization dynamics. This will provide useful guide for the application of three-terminal magnetic tunnel junction.
      Corresponding author: Wang Ri-Xing, wangrixing1982@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704120, 11847159) and the Research Foundation of Science and Technology Bureau of Changde City (Grant Nos. 2016KZ22, 2018J048)
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [4]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 285 867Google Scholar

    [5]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [6]

    张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427Google Scholar

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427Google Scholar

    [7]

    包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998Google Scholar

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998Google Scholar

    [8]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501Google Scholar

    [9]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118Google Scholar

    [10]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS Bulletin 43 352Google Scholar

    [11]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nature Electronics 1 508Google Scholar

    [12]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204

    [13]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [14]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physica, Mechanica & Astronomica 46 107306

    [15]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [16]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [17]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [18]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [19]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nature Mater 16 712Google Scholar

    [20]

    Sheng Y, Li Y C, Ma X Q, Wang K Y 2018 Appl. Phys. Lett. 113 112406Google Scholar

    [21]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Scientific Reports 8 382Google Scholar

    [22]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [23]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [24]

    Dyakonov M I, Perel V I 1971 Phys. Lett. 35 459Google Scholar

    [25]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [26]

    Zhang S F 2000 Phys. Rev. Lett. 85 393Google Scholar

    [27]

    Tomasello R, Carpentieri M, Finocchio G 2013 Appl. Phys. Lett. 103 252408Google Scholar

    [28]

    Wang Z H, Zhao W S, Deng E, Klein J O, Chappert C 2015 Journal of Physics D: Applied Physics 48 065001Google Scholar

    [29]

    Grollier J, Cros V, Jaffrès H, Hamzic A, George J M, Faini G, Youssef J. Ben, Le Gall H , Fert A 2003 Phys. Rev. B 67 174402Google Scholar

    [30]

    Bazaliy Ya B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421Google Scholar

    [31]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935Google Scholar

    [32]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439Google Scholar

    [33]

    刘秉正, 彭建华 2005 非线性动力学 (北京: 高等教育出版社) 第34页

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese)

    [34]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436Google Scholar

    [35]

    Zhou Y, Bonetti S, Zha C L, Åkerman J 2009 New J. Phys. 11 103028Google Scholar

    [36]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417Google Scholar

    [37]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905Google Scholar

    [38]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502Google Scholar

    [39]

    王日兴, 贺鹏斌, 肖运昌, 李建英 2015 物理学报 64 137201Google Scholar

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201Google Scholar

    [40]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 物理学报 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

    [41]

    Houssameddine D, Ebels U, Delaët B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Buda-Prejbeanu L D, Cyrille M C, Redon O, Dieny B 2007 Nature Materials 6 447Google Scholar

  • 图 1  理论模型和坐标系

    Figure 1.  Theoretical mode and coordinate system.

    图 2  以钉扎层磁化向量极角$ \theta_{\rm p} $和自旋轨道矩电流密度$ J_{\rm SHE} $为控制参数的相图

    Figure 2.  The phase diagram defined in parameter space spanned by the polar angle of pinned-layer magnetization vector $ \theta_{\rm p} $ and the current density of spin-orbit torque $ J_{\rm SHE} $

    图 3  对于图2中不同区域a, b, c,$ a^{\prime} $,$ b^{\prime} $,$ c^{\prime} $六点, 自由层磁化向量随时间的演化轨迹 (a)和($ {\rm a}^{\prime} $)准平行稳定态或平面内的进动态; (b)和($ {\rm b}^{\prime} $)伸出膜面的进动态; (c)和($ {\rm c}^{\prime} $)伸出膜面的稳定态

    Figure 3.  The time evolutions of free-layer magnetization vector for six points a, b, $ c, a^{\prime} $,$ b^{\prime} $ and $ c^{\prime} $ in different regions of Fig. 2. (a) and ($ {\rm a}^{\prime} $) quasi-P or IPP state; (b) and ($ {\rm b}^{\prime} $) OPP state; (c) and ($ {\rm c}^{\prime} $) OPS states.

    图 4  以钉扎层磁化向量方位角$ \phi_{\rm p} $和自旋轨道矩电流密度$ J_{\rm SHE} $为控制参数的相图

    Figure 4.  The phase diagram defined in parameter space spanned by the azimuthal angle of pinned-layer magnetization vector $ \phi_{\rm p} $ and the current density of spin-orbit torque $ J_{\rm SHE} $.

    图 5  对应图4中的“a”点, 自由层初始磁化沿x方向时磁化向量三个分量$ m_{x} $, $ m_{y} $$ m_{z} $在不同自旋矩驱动下随时间的演化 (a)自旋转移矩激发的平面内的稳定态; (b)自旋转移矩驱动磁化翻转; (c)自旋转移矩和自旋轨道矩共同激发的平面内的进动态; (d)自旋转移矩和自旋轨道矩共同驱动磁化翻转

    Figure 5.  The time evolutions of three components $ m_{x} $, $ m_{y} $ and $ m_{z} $ driven by different spin torque in free-layer magnetization vector for point ‘a’ of Fig. 4 with the initial magnetization along x direction: (a) IPS state excited by spin-transfer torque; (b) magnetization reversal driven by spin-transfer torque; (c) IPP state excited by spin-transfer torque and spin-orbit torque; (d) magnetization reversal driven by spin-transfer torque and spin-orbit torque.

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [4]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 285 867Google Scholar

    [5]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [6]

    张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427Google Scholar

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427Google Scholar

    [7]

    包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998Google Scholar

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998Google Scholar

    [8]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501Google Scholar

    [9]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118Google Scholar

    [10]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS Bulletin 43 352Google Scholar

    [11]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nature Electronics 1 508Google Scholar

    [12]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204

    [13]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [14]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physica, Mechanica & Astronomica 46 107306

    [15]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [16]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [17]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [18]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [19]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nature Mater 16 712Google Scholar

    [20]

    Sheng Y, Li Y C, Ma X Q, Wang K Y 2018 Appl. Phys. Lett. 113 112406Google Scholar

    [21]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Scientific Reports 8 382Google Scholar

    [22]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [23]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [24]

    Dyakonov M I, Perel V I 1971 Phys. Lett. 35 459Google Scholar

    [25]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [26]

    Zhang S F 2000 Phys. Rev. Lett. 85 393Google Scholar

    [27]

    Tomasello R, Carpentieri M, Finocchio G 2013 Appl. Phys. Lett. 103 252408Google Scholar

    [28]

    Wang Z H, Zhao W S, Deng E, Klein J O, Chappert C 2015 Journal of Physics D: Applied Physics 48 065001Google Scholar

    [29]

    Grollier J, Cros V, Jaffrès H, Hamzic A, George J M, Faini G, Youssef J. Ben, Le Gall H , Fert A 2003 Phys. Rev. B 67 174402Google Scholar

    [30]

    Bazaliy Ya B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421Google Scholar

    [31]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935Google Scholar

    [32]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439Google Scholar

    [33]

    刘秉正, 彭建华 2005 非线性动力学 (北京: 高等教育出版社) 第34页

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese)

    [34]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436Google Scholar

    [35]

    Zhou Y, Bonetti S, Zha C L, Åkerman J 2009 New J. Phys. 11 103028Google Scholar

    [36]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417Google Scholar

    [37]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905Google Scholar

    [38]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502Google Scholar

    [39]

    王日兴, 贺鹏斌, 肖运昌, 李建英 2015 物理学报 64 137201Google Scholar

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201Google Scholar

    [40]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 物理学报 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

    [41]

    Houssameddine D, Ebels U, Delaët B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Buda-Prejbeanu L D, Cyrille M C, Redon O, Dieny B 2007 Nature Materials 6 447Google Scholar

  • [1] He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue. Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface. Acta Physica Sinica, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [3] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [5] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [6] Yuan Jia-Hui, Yang Xiao-Kuo, Zhang Bin, Chen Ya-Bo, Zhong Jun, Wei Bo, Song Ming-Xu, Cui Huan-Qing. Activation function and computing performance of spin neuron driven by magnetic field and strain. Acta Physica Sinica, 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [7] Hu Yue, Cao Feng-Zhao, Dong Ren-Jing, Hao Chen-Yue, Liu Da-He, Shi Jin-Wei. Analysis of stability catastrophe of confocal cavity. Acta Physica Sinica, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [8] Li Zai-Dong, Guo Qi-Qi. Rogue wave solution in ferromagnetic nanowires. Acta Physica Sinica, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [9] Chen Ai-Tian, Zhao Yong-Gang. Progress of converse magnetoelectric coupling effect in multiferroic heterostructures. Acta Physica Sinica, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [10] Lv Gang, Zhang Hong, Hou Zhi-Wei. Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer. Acta Physica Sinica, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [11] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [12] Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong. Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer. Acta Physica Sinica, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [13] Wang Ri-Xing, He Peng-Bin, Xiao Yun-Chang, Li Jian-Ying. Stability of magnetization states in a ferromagnet/heavy metal bilayer structure. Acta Physica Sinica, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [14] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [15] Hao Jian-Hong, Gao Hui. Micromagnetic simulation of magnetization reversal on the annular free layer with nick in magnetic random access memory. Acta Physica Sinica, 2013, 62(5): 057502. doi: 10.7498/aps.62.057502
    [16] Zhang Li-Dong, Jia Lei, Zhu Wen-Xing. Curved road traffic flow car-following model and stability analysis. Acta Physica Sinica, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [17] Jin Wei, Wan Zhen-Mao, Liu Yao-Wen. Nonlinear magnetization dynamics excited by the spin-transfer torque effect. Acta Physica Sinica, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [18] Gao Rui-Xin, Xu Zhen, Chen Da-Xin, Xu Chu-Dong, Chen Zhi-Feng, Liu Xiao-Dong, Zhou Shi-Ming, Lai Tian-Shu. RE-TM antiferromagnetic coupling and laser induced ultrafast magnetization reversal dynamics in GdFeCo magneto-optical films. Acta Physica Sinica, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [19] Wei Gao-Feng, Li Kai-Tai, Feng Wei, Gao Hong-Fen. Stability and convergence analysis of incompatible numerical manifold method. Acta Physica Sinica, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [20] Wang Tao, Gao Zi-You, Zhao Xiao-Mei. Multiple velocity difference model and its stability analysis. Acta Physica Sinica, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
Metrics
  • Abstract views:  7209
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2019
  • Accepted Date:  13 August 2019
  • Available Online:  01 October 2019
  • Published Online:  20 October 2019

/

返回文章
返回