搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MgO磁性隧道结的五种隧穿磁电阻线性传感单元性能比较

韩秀峰 张雨 丰家峰 陈川 邓辉 黄辉 郭经红 梁云 司文荣 江安烽 魏红祥

引用本文:
Citation:

基于MgO磁性隧道结的五种隧穿磁电阻线性传感单元性能比较

韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥

Comparison of performance among five types of tunneling magnetoresistance linear sensing units based on MgO magnetic tunnel junction

Han Xiu-Feng, Zhang Yu, Feng Jia-Feng, Chen Chuan, Deng Hui, Huang Hui, Guo Jing-Hong, Liang Yun, Si Wen-Rong, Jiang An-Feng, Wei Hong-Xiang
PDF
HTML
导出引用
  • 磁性隧道结经过结构优化和性能提升已成功应用于磁存储、磁传感、磁逻辑等多种自旋电子学器件中. 磁传感是利用磁性隧道结的自由层和钉扎层之间特殊的磁结构来实现隧穿磁电阻(TMR)随外加磁场变化而呈现的线性输出. 迄今为止, 人们基于MgO磁性隧道结已经研发出五种TMR线性传感单元, 分别是人工间接双交换耦合型、磁场偏置型、面内/面外垂直型、超顺磁型的TMR线性传感单元. 本文梳理了这五种TMR线性传感单元并对它们的磁传感性能进行了系统比较, 为人们探索和发现磁敏传感器的相关应用提供了帮助.
    Magnetic tunnel junction (MTJ) has been successfully used in spintronic devices, such as magnetoresistive random access memory, tunneling magnetoresistance (TMR) sensor, magnetic logic. In the TMR sensor a special magnetic structure is used between the free layer and the pinned layer of an MTJ to realize a linear output. So far, five types of TMR linear sensing units (TMR-LSNs) have been developed based on MgO MTJs, which are artificial-indirect-double-exchange-coupling-, magnetic-field-biased-, in-plane-, perpendicular-, and superparamagnetic-TMR-LSN, respectively. In this paper, the five types of TMR-LSNs are combed and their magnetic sensing performances are systematically compared with each other. First, the five types of TMR-LSNs each have a linear resistance response to the external magnetic field with a changeable sensitivity, a linear field range and a low frequency noise level. Second, in the five types of TMR-LSNs different magnetic structures are used to realize the same aim that is to obtain the optimized performance parameters, which is of significance for putting TMR sensors into practical applications. Third, the five types of TMR-LSNs are suitable for different application scenarios due to their respective performance parameters. Therefore, we believe that our summarized discussion in this paper will help people to explore and find the relevant applications of TMR sensors based on the five types of TMR-LSNs.
      通信作者: 韩秀峰, xfhan@iphy.ac.cn
    • 基金项目: 国家电网有限公司总部管理科技项目“新型高灵敏度、高可靠性磁敏传感机理研究及材料制备”(批准号: 5700-202058381A-0-0-00)资助的课题.
      Corresponding author: Han Xiu-Feng, xfhan@iphy.ac.cn
    • Funds: Project supported by the State Grid Corporation of China (Grant No. 5700-202058381A-0-0-00).
    [1]

    Jullière M 1975 Phys. Lett. A 54 225Google Scholar

    [2]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar

    [3]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [4]

    Wang D, Nordman C, Daughton J M, Qian Z, Fink J 2004 IEEE Trans. Magn. 40 2269Google Scholar

    [5]

    Butler W H, Zhang X-G, Schulthess T C, MacLaren J M 2001 Phys. Rev. B 63 054416Google Scholar

    [6]

    Mathon J, Umersky A 2001 Phys. Rev. B 63 220403Google Scholar

    [7]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [8]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868Google Scholar

    [9]

    Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar

    [10]

    Wei H X, Qin Q H, Ma M, Sharif R, Han X F 2007 J. Appl. Phys. 101 09B501Google Scholar

    [11]

    Oleinik I I, Tsymbal E Y, Pettifor D G 2000 Phys. Rev. B 62 3952Google Scholar

    [12]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [13]

    Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar

    [14]

    Zhang J, Zhang X G, Han X F 2012 Appl. Phys. Lett. 100 222401Google Scholar

    [15]

    Kurt H, Rode K, Oguz K, Boese M, Faulkner C C, Coey J M D 2010 Appl. Phys. Lett. 96 262501Google Scholar

    [16]

    Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502Google Scholar

    [17]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H. D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar

    [18]

    Zeng Z M, Amiri P K, Katine J A, Langer J, Wang K L, Jiang H W 2012 Appl. Phys. Lett. 101 062412Google Scholar

    [19]

    Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar

    [20]

    Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904Google Scholar

    [21]

    Chen J Y, Carroll N, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 101 262402Google Scholar

    [22]

    Wei H X, Qin Q H, Wen Z C, Han X F, Zhang X G 2009 Appl. Phys. Lett. 94 172902Google Scholar

    [23]

    中国工程科技知识中心 2021知领˙报告 (2) 第2页

    Analysis and Countermeasure Research on Smart Sensor Market in China 2021 Know and Report(2) p2 (in Chinese)

    [24]

    Silva A V, Leitao D C, Valadeiro J, Amaral J, Freitas P P, Cardoso S 2015 Eur. Phys. J. Appl. Phys. 72 10601Google Scholar

    [25]

    Yu G Q, Feng J F, Kurt H, Liu H F, Han X F, Coey J M D 2012 J. Appl. Phys. 111 113906Google Scholar

    [26]

    Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar

    [27]

    Mazumdar D, Shen W F Liu X Y, Schrag B D, Carter M, Xiao G 2008 J. Appl. Phys. 103 113911Google Scholar

    [28]

    Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar

    [29]

    Yin X, Yang Y, Liu Y, Hua J, Sokolov A Ewing D, Rego P J D, Gao K, Liou S 2019 Proc. SPIE 11090 110903H

  • 图 1  基于单一MTJ结构的五种TMR线性传感单元的示意图, 其中反铁磁性层、铁磁性金属层(超顺磁性层)、势垒层是构成MTJ结构的主要材料层, (d) 图中的弹簧结构代表的是人工交换耦合结构的交换相互作用强度, 它决定了人工间接双交换耦合型的TMR线性传感单元的诸多性能参数

    Fig. 1.  Sketch of five TMR linear sensing units based on a single MTJ, the antiferromagnetic layer, ferromagnetic metal layer (superparamagnetic layer) and barrier layer are the main layers of an MTJ structure. The spring structure in Fig.(d) represents the exchange interaction strength of the synthetic exchange-coupling structure, which determines many performance parameters of the synthetic indirect-double-exchange-coupling TMR linear sensing unit.

    图 2  MTJ材料结构, TMR线性传感单元和TMR磁敏传感器的性能参数关系图

    Fig. 2.  Performance parameter diagram of an MTJ, a TMR linear sensing unit, and a TMR magnetoresistive sensor.

    表 1  基于单一 MgO MTJ的五种TMR线性传感单元的性能参数

    Table 1.  Performance parameters of five TMR linear sensing units based on a single MTJ.

    TMR磁敏传感器类型名称
    (基于单一MTJ)
    TMR比值/%灵敏度/
    (%·Oe–1)
    线性磁场
    范围/Oe
    噪声指数/
    (nT@10 Hz)
    非线性度探测层厚度
    tCoFe(Si)B/nm
    种类I超顺磁型1086.088901[27]
    种类II面外垂直型(含一垂直磁矩)> 520.02600< 1%1.36[18]
    种类III面内垂直型1303—4104.63[21]
    种类IV1人工间接双交换耦合型> 2002.6~60903[19]
    种类IV2人工间接双交换耦合型~2003.9~284.530[26]
    种类V磁场偏置型@HB=50 Oe~180~1.3~751530[26]
    下载: 导出CSV
  • [1]

    Jullière M 1975 Phys. Lett. A 54 225Google Scholar

    [2]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar

    [3]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [4]

    Wang D, Nordman C, Daughton J M, Qian Z, Fink J 2004 IEEE Trans. Magn. 40 2269Google Scholar

    [5]

    Butler W H, Zhang X-G, Schulthess T C, MacLaren J M 2001 Phys. Rev. B 63 054416Google Scholar

    [6]

    Mathon J, Umersky A 2001 Phys. Rev. B 63 220403Google Scholar

    [7]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [8]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868Google Scholar

    [9]

    Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar

    [10]

    Wei H X, Qin Q H, Ma M, Sharif R, Han X F 2007 J. Appl. Phys. 101 09B501Google Scholar

    [11]

    Oleinik I I, Tsymbal E Y, Pettifor D G 2000 Phys. Rev. B 62 3952Google Scholar

    [12]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [13]

    Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar

    [14]

    Zhang J, Zhang X G, Han X F 2012 Appl. Phys. Lett. 100 222401Google Scholar

    [15]

    Kurt H, Rode K, Oguz K, Boese M, Faulkner C C, Coey J M D 2010 Appl. Phys. Lett. 96 262501Google Scholar

    [16]

    Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502Google Scholar

    [17]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H. D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar

    [18]

    Zeng Z M, Amiri P K, Katine J A, Langer J, Wang K L, Jiang H W 2012 Appl. Phys. Lett. 101 062412Google Scholar

    [19]

    Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar

    [20]

    Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904Google Scholar

    [21]

    Chen J Y, Carroll N, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 101 262402Google Scholar

    [22]

    Wei H X, Qin Q H, Wen Z C, Han X F, Zhang X G 2009 Appl. Phys. Lett. 94 172902Google Scholar

    [23]

    中国工程科技知识中心 2021知领˙报告 (2) 第2页

    Analysis and Countermeasure Research on Smart Sensor Market in China 2021 Know and Report(2) p2 (in Chinese)

    [24]

    Silva A V, Leitao D C, Valadeiro J, Amaral J, Freitas P P, Cardoso S 2015 Eur. Phys. J. Appl. Phys. 72 10601Google Scholar

    [25]

    Yu G Q, Feng J F, Kurt H, Liu H F, Han X F, Coey J M D 2012 J. Appl. Phys. 111 113906Google Scholar

    [26]

    Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar

    [27]

    Mazumdar D, Shen W F Liu X Y, Schrag B D, Carter M, Xiao G 2008 J. Appl. Phys. 103 113911Google Scholar

    [28]

    Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar

    [29]

    Yin X, Yang Y, Liu Y, Hua J, Sokolov A Ewing D, Rego P J D, Gao K, Liou S 2019 Proc. SPIE 11090 110903H

  • [1] 丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰. 电流焦耳热调控反转型垂直(Co/Pt)n/Co/IrMn纳米多层膜结构的交换偏置效应研究. 物理学报, 2023, 72(1): 018501. doi: 10.7498/aps.72.20221584
    [2] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能. 物理学报, 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [3] 张亚君, 蔡佳林, 乔亚, 曾中明, 袁喆, 夏钶. 基于磁性隧道结的群体编码实现无监督聚类. 物理学报, 2022, 71(14): 148506. doi: 10.7498/aps.71.20220252
    [4] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究. 物理学报, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [5] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [6] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究. 物理学报, 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [7] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [8] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [9] 刘德, 张红梅, 贾秀敏. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应. 物理学报, 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [10] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻. 物理学报, 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [11] 彭子龙, 韩秀峰, 赵素芬, 魏红祥, 杜关祥, 詹文山. 磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转. 物理学报, 2006, 55(2): 860-864. doi: 10.7498/aps.55.860
    [12] 唐为华, 李培刚, L. H. Li, J. Gao. La2/3Ca1/3MnO3/Eu2CuO4/La2/3Ca1/3MnO3磁性隧道结的制备与表征. 物理学报, 2005, 54(1): 291-294. doi: 10.7498/aps.54.291
    [13] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [14] 冯玉清, 侯利娜, 朱 涛, 姚淑德, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究. 物理学报, 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [15] 张 喆, 朱 涛, 冯玉清, 张 泽. Co基磁性隧道结势垒结构的电子全息研究. 物理学报, 2005, 54(12): 5861-5866. doi: 10.7498/aps.54.5861
    [16] 李飞飞, 张谢群, 杜关祥, 王天兴, 曾中明, 魏红祥, 韩秀峰. 高磁电阻磁性隧道结的几种微制备方法研究. 物理学报, 2005, 54(8): 3831-3838. doi: 10.7498/aps.54.3831
    [17] 由 臣, 赵燕平, 金恩姬, 李飞飞, 王天兴, 曾中明, 彭子龙. 利用金属掩模法制备钉扎型磁性隧道结. 物理学报, 2004, 53(8): 2741-2745. doi: 10.7498/aps.53.2741
    [18] 王天兴, 魏红祥, 李飞飞, 张爱国, 曾中明, 詹文山, 韩秀峰. 4英寸热氧化硅衬底上磁性隧道结的微制备. 物理学报, 2004, 53(11): 3895-3901. doi: 10.7498/aps.53.3895
    [19] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法. 物理学报, 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
    [20] 刘存业, 徐庆宇, 倪 刚, 桑 海, 都有为. Fe/Al2O3/Fe隧道结特性分析. 物理学报, 2000, 49(9): 1897-1900. doi: 10.7498/aps.49.1897
计量
  • 文章访问数:  2952
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-04
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回