Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tripartite quantum correlations of polar molecules in pendular states

Li Yan-Jie Liu Jin-Ming

Citation:

Tripartite quantum correlations of polar molecules in pendular states

Li Yan-Jie, Liu Jin-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cold polar molecules have long coherence time and strong dipole-dipole interaction and thus are regarded as a promising quantum carrier for quantum information processing. In this paper, by employing the pendular states of polar molecules as qubit, we investigate the properties of three types of tripartite quantum correlations for three linear polar molecules and numerically analyze the relations of tripartite negativity, measurement-induced disturbance (MID), and tripartite quantum discord (TQD) to three dimensionless reduced variables that relate to external field strength, dipole moment, rotational constant, dipole-dipole coupling, and temperature. The result shows that if the values of the other parameters are fixed, the three quantum correlations decrease with the increase of the field strength, and the three quantum correlations first increase to their respective maxima and then diminish gradually as the dipole-dipole coupling becomes larger. Moreover, as the temperature increases, both tripartite negativity and TQD become small, but with the variation of temperature there exhibit different evolution tendencies for MID between the influence of the electric field strength and that of the dipole-dipole coupling. In addition, the three quantum correlations of polar molecules in pendular state can be manipulated by tuning the external electric field strength, dipole-dipole coupling, and temperature.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174081, 11034002, 11134003, 11104075) and the National Basic Research Program of China (Grant Nos. 2011CB921602, 2012CB821302).
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [5]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824

    [6]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [7]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [8]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [9]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [10]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [11]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

    [12]

    Luo S 2008 Phys. Rev. A 77 022301

    [13]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [14]

    Luo S, Fu S 2010 Phys. Rev. A 82 034302

    [15]

    Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501

    [16]

    Giorgi G L, Bellomo B, Galve F, Zambrini R 2011 Phys. Rev. Lett. 107 190501

    [17]

    Buscemi F, Bordone P 2013 Phys. Rev. A 87 042310

    [18]

    Werlang T, Souza S, Fanchini F F, Boas C J V 2009 Phys. Rev. A 80 024103

    [19]

    Wang B, Xu Z Y, Chen Z Q, Feng M 2010 Phys. Rev. A 81 014101

    [20]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [21]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [22]

    Guo H, Liu J M, Zhang C J, Oh C H 2012 Quantum Inf. Comput. 12 0677

    [23]

    Hu M L, Fan H 2012 Ann. Phys. 327 851

    [24]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [25]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [26]

    Shen C G, Zhang G F, Fan K M, Zhu H J 2014 Chin. Phys. B 23 050310

    [27]

    Qiu L, Ye B 2014 Chin. Phys. B 23 050304

    [28]

    Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commun. 1 7

    [29]

    Auccaise R, Celeri L C, Soares-Pinto D O, de Azevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S, Serra R M 2011 Phys. Rev. Lett. 107 140403

    [30]

    Rong X, Jin F, Wang Z, Geng J, Ju C, Wang Y, Zhang R, Duan C, Shi M, Du J 2013 Phys. Rev. B 88 054419

    [31]

    Krems R, Friedrich B, Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor Francis)

    [32]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [33]

    Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401

    [34]

    Ulmanis J, Deiglmayr J, Repp M, Wester R, Weidemuller M 2012 Chem. Rev. 112 4890

    [35]

    Deng L Z, Liang Y, Gu Z X, Hou S Y, Li S Q, Xia Y, Yin J P 2011 Phys. Rev. Lett. 106 140401

    [36]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [37]

    Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [38]

    Tordrup K, Negretti A, Molmer K 2008 Phys. Rev. Lett. 101 040501

    [39]

    Chen Q, Yang W, Feng M 2012 Phys. Rev. A 86 045801

    [40]

    Charron E, Milman P, Keller A, Atabek O 2007 Phys. Rev. A 75 033414

    [41]

    Kuznetsova E, Gacesa M, Yelin S F, Cote R 2010 Phys. Rev. A 81 030301

    [42]

    Wei Q, Kais S, Friedrich B, Herschbach D 2011 J. Chem. Phys. 134 124107

    [43]

    Zhu J, Kais S, Wei Q, Herschbach D, Friedrich B 2013 J. Chem. Phys. 138 024104

    [44]

    Sabin C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 43

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [5]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824

    [6]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [7]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [8]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [9]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [10]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [11]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

    [12]

    Luo S 2008 Phys. Rev. A 77 022301

    [13]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [14]

    Luo S, Fu S 2010 Phys. Rev. A 82 034302

    [15]

    Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501

    [16]

    Giorgi G L, Bellomo B, Galve F, Zambrini R 2011 Phys. Rev. Lett. 107 190501

    [17]

    Buscemi F, Bordone P 2013 Phys. Rev. A 87 042310

    [18]

    Werlang T, Souza S, Fanchini F F, Boas C J V 2009 Phys. Rev. A 80 024103

    [19]

    Wang B, Xu Z Y, Chen Z Q, Feng M 2010 Phys. Rev. A 81 014101

    [20]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [21]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [22]

    Guo H, Liu J M, Zhang C J, Oh C H 2012 Quantum Inf. Comput. 12 0677

    [23]

    Hu M L, Fan H 2012 Ann. Phys. 327 851

    [24]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [25]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [26]

    Shen C G, Zhang G F, Fan K M, Zhu H J 2014 Chin. Phys. B 23 050310

    [27]

    Qiu L, Ye B 2014 Chin. Phys. B 23 050304

    [28]

    Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commun. 1 7

    [29]

    Auccaise R, Celeri L C, Soares-Pinto D O, de Azevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S, Serra R M 2011 Phys. Rev. Lett. 107 140403

    [30]

    Rong X, Jin F, Wang Z, Geng J, Ju C, Wang Y, Zhang R, Duan C, Shi M, Du J 2013 Phys. Rev. B 88 054419

    [31]

    Krems R, Friedrich B, Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor Francis)

    [32]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [33]

    Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401

    [34]

    Ulmanis J, Deiglmayr J, Repp M, Wester R, Weidemuller M 2012 Chem. Rev. 112 4890

    [35]

    Deng L Z, Liang Y, Gu Z X, Hou S Y, Li S Q, Xia Y, Yin J P 2011 Phys. Rev. Lett. 106 140401

    [36]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [37]

    Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [38]

    Tordrup K, Negretti A, Molmer K 2008 Phys. Rev. Lett. 101 040501

    [39]

    Chen Q, Yang W, Feng M 2012 Phys. Rev. A 86 045801

    [40]

    Charron E, Milman P, Keller A, Atabek O 2007 Phys. Rev. A 75 033414

    [41]

    Kuznetsova E, Gacesa M, Yelin S F, Cote R 2010 Phys. Rev. A 81 030301

    [42]

    Wei Q, Kais S, Friedrich B, Herschbach D 2011 J. Chem. Phys. 134 124107

    [43]

    Zhu J, Kais S, Wei Q, Herschbach D, Friedrich B 2013 J. Chem. Phys. 138 024104

    [44]

    Sabin C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 43

  • [1] Zhao Lin-Yang, He Kan, Zhang Yan-Fang. Persistency of tripartite nonlocality sharing with noise. Acta Physica Sinica, 2024, 73(21): 210301. doi: 10.7498/aps.73.20241150
    [2] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [3] Mao Li-Jun, Zhang Yun-Bo. The dynamics of the bipartite and tripartite entanglement in the three-qubit Dicke model. Acta Physica Sinica, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [4] Ren Jie, Gu Li-Ping, You Wen-Long. Fidelity susceptibility and entanglement entropy in S=1 quantum spin chain with three-site interactions. Acta Physica Sinica, 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [5] Cheng Jing, Shan Chuan-Jia, Liu Ji-Bing, Huang Yan-Xia, Liu Tang-Kun. Geometric quantum discord in Tavis-Cummings model. Acta Physica Sinica, 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [6] Lai Zhi-Hui, Leng Yong-Gang. Dynamic response and stochastic resonance of a tri-stable system. Acta Physica Sinica, 2015, 64(20): 200503. doi: 10.7498/aps.64.200503
    [7] Wang Dan-Qin, He Chuang-Chuang. Investigation of quantum discord for two-spin system. Acta Physica Sinica, 2015, 64(4): 043403. doi: 10.7498/aps.64.043403
    [8] Lu Dao-Ming, Qiu Chang-Dong. Quantum discord in the system of two atoms trapped in weak coherent state cavities connected by an optical fiber. Acta Physica Sinica, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [9] Li Rui-Qi, Lu Dao-Ming. Quantum discord in the system of atoms interacting with coupled cavities. Acta Physica Sinica, 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [10] Xie Mei-Qiu, Guo Bin. Thermal quantum discord in Heisenberg XXZ model under different magnetic field conditions. Acta Physica Sinica, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [11] Chen Ai-Xi, Chen Yuan, Deng Li, Kuang Yun-Feng. Spontaneously generated coherence induced transparency in an asymmetric semiconductor quantum well. Acta Physica Sinica, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [12] Lu Dao-Ming. The evolution of three-body entanglement in the system of atoms interacting with coupled cavities. Acta Physica Sinica, 2012, 61(18): 180301. doi: 10.7498/aps.61.180301
    [13] Wang Hai-Xia, Yin Wen, Wang Fang-Wei. Measurement of entanglement in coupled dots. Acta Physica Sinica, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [14] Zheng Yong-Zhen, Qi Chang-Wei, Ding Xuan-Tong, Lee Wen-Zhong. Internal magnetic fluctuation in the HL-1M tokamak. Acta Physica Sinica, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [15] Li Yao-Yi, Cheng Mu-Tian, Zhou Hui-Jun, Liu Shao-Ding, Wang Qu-Quan, Xue Qi-Kun. Efficiency of single photon emission in three-level system of semiconductor quantum dots with pulsed excitation. Acta Physica Sinica, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [16] Liu Cheng-Zhou. Quantum entropy of the general non-stationary black hole with charges. Acta Physica Sinica, 2005, 54(5): 1977-1981. doi: 10.7498/aps.54.1977
    [17] Sun Ming-Chao. Quantum entropy of the non-static black hole in(2+1)dimensions. Acta Physica Sinica, 2004, 53(6): 1665-1668. doi: 10.7498/aps.53.1665
    [18] Liu Cheng-Shi, Ma Ben-Kun. Dynamic behaviours of an exciton confined in coupled quantum dots driven by a hi gh alternating current electrical field. Acta Physica Sinica, 2003, 52(8): 2027-2032. doi: 10.7498/aps.52.2027
    [19] Zhu Yun, Wang Tai-Hong. Investigations of three-terminal electronic measurement on quantum dot devices. Acta Physica Sinica, 2003, 52(3): 677-682. doi: 10.7498/aps.52.677
    [20] Zhu Jian-Yang. . Acta Physica Sinica, 1995, 44(9): 1489-1497. doi: 10.7498/aps.44.1489
Metrics
  • Abstract views:  5302
  • PDF Downloads:  462
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2014
  • Accepted Date:  08 June 2014
  • Published Online:  05 October 2014

/

返回文章
返回