-
Radial magnetic vortices, characterized by their topological stability and nanoscale dimensions, are considered to be highly promising information carriers in magnetic electronic devices. However, traditional methods of reversing the polarity of radial magnetic vortices, which rely on magnetic fields or spin-polarized currents, encounter significant energy consumption problems. To address this challenge, this study proposes a novel field-free control scheme based on multiferroic heterostructures, consisting of a bicomponent nanomagnet (Terfenol-D/Ni), a heavy metal layer, and a piezoelectric layer. The intrinsic symmetry-breaking property of this structure effectively disrupts the circular symmetry of the radial magnetic vortex, which can make voltage-driven polarity reversal through magnetoelectric coupling effects. MuMax3-based multifield coupling simulations of electro-mechanical-magnetic interactions show that when the ratio of the bicomponent materials $ d _ { \rm T D } : d _ { \rm Ni } = 1 : 2 $ and the interfacial Dzyaloshinskii-Moriya interaction (DMI) coefficient (D) is in a range of $ 1 . 2\; {\rm m J / m ^ { 2 } } < D < 1 . 9\; {\rm m J / m ^ {2}} $, the system stably presents a radial magnetic vortex state. Within this DMI coefficient range, when the thickness of the bicomponent nanomagnet is less than 4 nm, an appropriate radius can be found to ensure that the ground state of the bicomponent nanomagnet is a radial magnetic vortex state. Particularly, when the thickness t = 1 nm, the radius of the bicomponent nanomagnet can remain in the radial magnetic vortex state in a range of 50 ± 10 nm. In addition, this study also verifies that square and elliptical bicomponent nanomagnets each have a ground state of radial magnetic vortex. When $ D = 1.7\;{\rm m J / m ^ {2}} $, only a 90 mV voltage pulse is required to achieve polarity reversal of the bicomponent nanomagnet, with a total energy consumption per bit Etotal of 5.6 aJ, which is six orders of magnitude lower than that from the traditional methods (reaching the aJ level). Through the simulation of transient magnetization dynamics and the analysis of energy evolution, this study reveals the physical mechanism of polarity reversal of radial magnetic vortices in this bicomponent multiferroic heterostructure: The energy competition in the bimaterial system driven by strain leads to the reconfiguration of magnetic moments, achieving the polarity reversal with efficient and ultra-low energy consumption. This scheme provides a new path for on-chip integration of magnetic vortex memory and opens up a new paradigm for designing non-current-driven “electric write” magnetic storage devices, which has significant application value in the field of low-power spintronics.
-
Keywords:
- radial magnetic vortex /
- strain-driven /
- nanomagnet /
- magnetoelectric coupling
[1] Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270
Google Scholar
[2] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502
Google Scholar
Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502
Google Scholar
[3] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204
Google Scholar
[4] Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, Marrows C 2014 Phys. Rev. B: Condens. Matter 90 020402
Google Scholar
[5] Tomasello R, Carpentieri M, Finocchio G 2014 J. Appl. Phys. 115 17C730
Google Scholar
[6] Verba R, Navas D, Hierro-Rodriguez A, Bunyaev S, Ivanov B, Guslienko K, Kakazei G 2018 Phys. Rev. Appl. 10 031002
Google Scholar
[7] Bhattacharjee P, Mondal S, Saha S, Barman S 2025 J. Phys. Condens. Matter 37 133001
Google Scholar
[8] Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G 2018 Sci. Rep. 8 7180
Google Scholar
[9] Li C, Cai L, Wang S, Yang X, Cui H, Wei B, Dong D, Li C, Liu J, Liu B 2018 IEEE Trans. Magn. 54 3400806
Google Scholar
[10] Wang Y, Wang L, Xia J, et al. 2020 Nat. Commun. 11 3577
Google Scholar
[11] Schoenherr P, Manz S, Kuerten L, Shapovalov K, Iyama A, Kimura T, Fiebig M, Meier D 2020 npj Quantum Materials 5 86
Google Scholar
[12] Geirhos K, Gross B, Szigeti B G, Mehlin A, Philipp S, White J S, Cubitt R, Widmann S, Ghara S, Lunkenheimer P, et al. 2020 npj Quantum Materials 5 44
Google Scholar
[13] Li C, Fang L, Yang X, Xu N, Liu B, Wei B, Zhou E, Yang B 2019 J. Phys. D: Appl. Phys. 53 015001
Google Scholar
[14] Ma Y, Zhao R, Song C, Jin C, Wang J, Wei Y, Huang Y, Wang J, Wang J, Liu Q 2019 J. Magn. Magn. Mater. 491 165544
Google Scholar
[15] Dong D, Cai L, Li C, Liu B, Li C, Liu J 2019 J. Phys. D: Appl. Phys. 52 295001
Google Scholar
[16] Fujita R, Gurung G, Mawass M A, et al. 2024 Adv. Funct. Mater. 34 2400552
Google Scholar
[17] Zhu M, Hu H, Cui S, Li Y, Zhou X, Qiu Y, Guo R, Wu G, Yu G, Zhou H 2021 Appl. Phys. Lett. 118 262412
Google Scholar
[18] Hu H, Yu G, Li Y, Qiu Y, Zhu H, Zhu M, Zhou H 2022 Micromachines 13 1056
Google Scholar
[19] Sanchez-Manzano D, Orfila G, Sander A, et al. 2024 ACS Appl. Mater. Interfaces 16 19681
Google Scholar
[20] Shimon G, Adeyeye A, Ross C 2012 Appl. Phys. Lett. 101 083112
Google Scholar
[21] Xia Y, Yang X, Dou S, Cui H, Wei B, Liang B, Yan X 2024 AIP Adv. 14 045239
Google Scholar
[22] Biswas A K, Bandyopadhyay S, Atulasimha J 2014 Appl. Phys. Lett. 105 072408
Google Scholar
[23] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP Adv. 4 107133
Google Scholar
[24] Landau L, Lifshitz E 1935 Phys. Z. Sowjetunion 8 101
[25] Gilbert T L 1955 Phys. Rev. 100 1243
[26] Zhang S, Wang W, Burn D, Peng H, Berger H, Bauer A, Pfleiderer C, Van Der Laan G, Hesjedal T 2018 Nat. Commun. 9 2115
Google Scholar
[27] Cui H, Cai L, Yang X, Wang S, Zhang M, Li C, Feng C 2018 Appl. Phys. Lett. 11 092404
Google Scholar
[28] Cui J, Hockel J L, Nordeen P K, Pisani D M, Liang C y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905
Google Scholar
[29] Cui J, Liang C Y, Paisley E A, Sepulveda A, Ihlefeld J F, Carman G P, Lynch C S 2015 Appl. Phys. Lett. 107 092903
Google Scholar
[30] Bandyopadhyay S 2024 IEEE Trans. Magn. 60 1
[31] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899
Google Scholar
[32] Dou S, Yang X, Yuan J, Xia Y, Bai X, Cui H, Wei B 2023 IEEE Magn. Lett. 14 4500305
Google Scholar
-
-
[1] Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270
Google Scholar
[2] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502
Google Scholar
Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502
Google Scholar
[3] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204
Google Scholar
[4] Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, Marrows C 2014 Phys. Rev. B: Condens. Matter 90 020402
Google Scholar
[5] Tomasello R, Carpentieri M, Finocchio G 2014 J. Appl. Phys. 115 17C730
Google Scholar
[6] Verba R, Navas D, Hierro-Rodriguez A, Bunyaev S, Ivanov B, Guslienko K, Kakazei G 2018 Phys. Rev. Appl. 10 031002
Google Scholar
[7] Bhattacharjee P, Mondal S, Saha S, Barman S 2025 J. Phys. Condens. Matter 37 133001
Google Scholar
[8] Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G 2018 Sci. Rep. 8 7180
Google Scholar
[9] Li C, Cai L, Wang S, Yang X, Cui H, Wei B, Dong D, Li C, Liu J, Liu B 2018 IEEE Trans. Magn. 54 3400806
Google Scholar
[10] Wang Y, Wang L, Xia J, et al. 2020 Nat. Commun. 11 3577
Google Scholar
[11] Schoenherr P, Manz S, Kuerten L, Shapovalov K, Iyama A, Kimura T, Fiebig M, Meier D 2020 npj Quantum Materials 5 86
Google Scholar
[12] Geirhos K, Gross B, Szigeti B G, Mehlin A, Philipp S, White J S, Cubitt R, Widmann S, Ghara S, Lunkenheimer P, et al. 2020 npj Quantum Materials 5 44
Google Scholar
[13] Li C, Fang L, Yang X, Xu N, Liu B, Wei B, Zhou E, Yang B 2019 J. Phys. D: Appl. Phys. 53 015001
Google Scholar
[14] Ma Y, Zhao R, Song C, Jin C, Wang J, Wei Y, Huang Y, Wang J, Wang J, Liu Q 2019 J. Magn. Magn. Mater. 491 165544
Google Scholar
[15] Dong D, Cai L, Li C, Liu B, Li C, Liu J 2019 J. Phys. D: Appl. Phys. 52 295001
Google Scholar
[16] Fujita R, Gurung G, Mawass M A, et al. 2024 Adv. Funct. Mater. 34 2400552
Google Scholar
[17] Zhu M, Hu H, Cui S, Li Y, Zhou X, Qiu Y, Guo R, Wu G, Yu G, Zhou H 2021 Appl. Phys. Lett. 118 262412
Google Scholar
[18] Hu H, Yu G, Li Y, Qiu Y, Zhu H, Zhu M, Zhou H 2022 Micromachines 13 1056
Google Scholar
[19] Sanchez-Manzano D, Orfila G, Sander A, et al. 2024 ACS Appl. Mater. Interfaces 16 19681
Google Scholar
[20] Shimon G, Adeyeye A, Ross C 2012 Appl. Phys. Lett. 101 083112
Google Scholar
[21] Xia Y, Yang X, Dou S, Cui H, Wei B, Liang B, Yan X 2024 AIP Adv. 14 045239
Google Scholar
[22] Biswas A K, Bandyopadhyay S, Atulasimha J 2014 Appl. Phys. Lett. 105 072408
Google Scholar
[23] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP Adv. 4 107133
Google Scholar
[24] Landau L, Lifshitz E 1935 Phys. Z. Sowjetunion 8 101
[25] Gilbert T L 1955 Phys. Rev. 100 1243
[26] Zhang S, Wang W, Burn D, Peng H, Berger H, Bauer A, Pfleiderer C, Van Der Laan G, Hesjedal T 2018 Nat. Commun. 9 2115
Google Scholar
[27] Cui H, Cai L, Yang X, Wang S, Zhang M, Li C, Feng C 2018 Appl. Phys. Lett. 11 092404
Google Scholar
[28] Cui J, Hockel J L, Nordeen P K, Pisani D M, Liang C y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905
Google Scholar
[29] Cui J, Liang C Y, Paisley E A, Sepulveda A, Ihlefeld J F, Carman G P, Lynch C S 2015 Appl. Phys. Lett. 107 092903
Google Scholar
[30] Bandyopadhyay S 2024 IEEE Trans. Magn. 60 1
[31] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899
Google Scholar
[32] Dou S, Yang X, Yuan J, Xia Y, Bai X, Cui H, Wei B 2023 IEEE Magn. Lett. 14 4500305
Google Scholar
Catalog
Metrics
- Abstract views: 2499
- PDF Downloads: 12
- Cited By: 0