-
Radial magnetic vortices, characterized by their topological stability and nanoscale dimensions, are considered highly promising information carriers in magnetic electronic devices. However, traditional methods for reversing the polarity of radial magnetic vortices, which rely on magnetic fields or spin-polarized currents, encounter significant energy consumption issues. To address this challenge, this study proposes a novel field-free control scheme based on multiferroic heterostructures, consisting of a bicomponent nanomagnet (Terfenol-D/Ni), a heavy metal layer, and a piezoelectric layer. The intrinsic symmetry-breaking property of this structure effectively disrupts the circular symmetry of the radial magnetic vortex, enabling voltage-driven polarity reversal through magnetoelectric coupling effects. MuMax3-based multi-field coupling simulations of electro-mechanical-magnetic interactions show that when the ratio of the bicomponent materials $ d _ { \rm T D } : d _ { \rm Ni } = 1 : 2 $ and the interfacial Dzyaloshinskii-Moriya interaction (DMI) coefficient (D) is within the range of $ 1 . 2\; {\rm m J / m ^ { 2 } } < D < 1 . 9\; {\rm m J / m ^ {2}} $, the system stably presents a radial magnetic vortex state. Within this DMI coefficient range, when the thickness of the bicomponent nanomagnet is less than 4 nm, an appropriate radius can be found to ensure that the ground state of the bicomponent nanomagnet is a radial magnetic vortex state. Particularly, when the thickness t = 1 nm, the radius of the bicomponent nanomagnet can remain in the radial magnetic vortex state within the range of 50 ± 10 nm. In addition, this study also verified that both square and elliptical bicomponent nanomagnets have a ground state of radial magnetic vortices. When $ D = 1.7\;{\rm m J / m ^ {2}} $, only a 90 mV voltage pulse is required to achieve polarity reversal of the bicomponent nanomagnet, with a total energy consumption per bit Etotal of 5.6 aJ, which is six orders of magnitude lower than traditional methods (reaching the aJ level). Through transient magnetization dynamics simulation and energy evolution analysis, the study reveals the physical mechanism of polarity reversal of radial magnetic vortices in this bicomponent multiferroic heterostructure: the energy competition in the bimaterial system driven by strain leads to the reconfiguration of magnetic moments, achieving efficient and ultra-low energy consumption polarity reversal. This scheme provides a new path for on-chip integration of magnetic vortex memory and opens up a new paradigm for the design of non-current-driven “electric write” magnetic storage devices, which has significant application value in the field of low-power spintronics.
-
Keywords:
- Radial magnetic vortex /
- Strain-driven /
- Nanomagnet /
- Magnetoelectric coupling
-
-
[1] Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nature materials 6 270
Google Scholar
[2] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502
Google Scholar
Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502
Google Scholar
[3] Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, Marrows C 2014 Physical Review B 90 020402
Google Scholar
[4] Tomasello R, Carpentieri M, Finocchio G 2014 Journal of Applied Physics 115 17C730
Google Scholar
[5] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204
Google Scholar
[6] Verba R, Navas D, Hierro-Rodriguez A, Bunyaev S, Ivanov B, Guslienko K, Kakazei G 2018 Physical Review Applied 10 031002
Google Scholar
[7] Bhattacharjee P, Mondal S, Saha S, Barman S 2025 Journal of Physics: Condensed Matter 37 133001
Google Scholar
[8] Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G 2018 Scientific reports 8 7180
Google Scholar
[9] Li C, Cai L, Wang S, Yang X, Cui H, Wei B, Dong D, Li C, Liu J, Liu B 2018 IEEE Transactions on Magnetics 54 1
[10] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, et al 2020 Nature communications 11 3577
Google Scholar
[11] Schoenherr P, Manz S, Kuerten L, Shapovalov K, Iyama A, Kimura T, Fiebig M, Meier D 2020 npj Quantum Materials 5 86
Google Scholar
[12] Geirhos K, Gross B, Szigeti B G, Mehlin A, Philipp S, White J S, Cubitt R, Widmann S, Ghara S, Lunkenheimer P, et al 2020 npj Quantum Materials 5 44
Google Scholar
[13] Li C, Fang L, Yang X, Xu N, Liu B, Wei B, Zhou E, Yang B 2019 Journal of Physics D: Applied Physics 53 015001
[14] Ma Y, Zhao R, Song C, Jin C, Wang J, Wei Y, Huang Y, Wang J, Wang J, Liu Q 2019 Journal of Magnetism and Magnetic Materials 491 165544
Google Scholar
[15] Dong D, Cai L, Li C, Liu B, Li C, Liu J 2019 Journal of Physics D: Applied Physics 52 295001
Google Scholar
[16] Fujita R, Gurung G, Mawass M A, Smekhova A, Kronast F, Toh A K J, Soumyanarayanan A, Ho P, Singh A, Heppell E, et al 2024 Advanced Functional Materials 34 2400552
Google Scholar
[17] Zhu M, Hu H, Cui S, Li Y, Zhou X, Qiu Y, Guo R, Wu G, Yu G, Zhou H 2021 Applied Physics Letters 118 262412
Google Scholar
[18] Hu H, Yu G, Li Y, Qiu Y, Zhu H, Zhu M, Zhou H 2022 Micromachines 13 1056
Google Scholar
[19] Sanchez-Manzano D, Orfila G, Sander A, Marcano L, Gallego F, Mawass M A, Grilli F, Arora A, Peralta A, Cuellar F A, et al 2024 ACS Applied Materials & Interfaces 16 1961
[20] Shimon G, Adeyeye A, Ross C 2012 Applied Physics Letters 101 083112
Google Scholar
[21] Xia Y, Yang X, Dou S, Cui H, Wei B, Liang B, Yan X 2024 AIP Advances 14 045239
Google Scholar
[22] Biswas A K, Bandyopadhyay S, Atulasimha J 2014 Applied Physics Letters 105 072408
Google Scholar
[23] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP advances 4 107133
Google Scholar
[24] Landau L, Lifshitz E, et al 1935 Phys. Z. Sowjetunion 8 101
[25] Gilbert T L 1955 Phys. Rev. 100 1243
[26] Zhang S, Wang W, Burn D, Peng H, Berger H, Bauer A, Pfleiderer C, Van Der Laan G, Hesjedal T 2018 Nature communications 9 2115
Google Scholar
[27] Cui H, Cai L, Yang X, Wang S, Zhang M, Li C, Feng C 2018 Applied Physics Letters 11 2
[28] Cui J, Hockel J L, Nordeen P K, Pisani D M, Liang C y, Carman G P, Lynch C S 2013 Applied Physics Letters 103 232905
Google Scholar
[29] Cui J, Liang C Y, Paisley E A, Sepulveda A, Ihlefeld J F, Carman G P, Lynch C S 2015 Applied Physics Letters 107 092903
Google Scholar
[30] Bandyopadhyay S 2024 IEEE Transactions on Magnetics 60 1
[31] Nagaosa N, Tokura Y 2013 Nature nanotechnology 8 899
Google Scholar
[32] Dou S, Yang X, Yuan J, Xia Y, Bai X, Cui H, Wei B 2023 IEEE Magnetics Letters 14 1
[33] Ma Y, Zhao R, Song C, Jin C, Wang J, Wei Y, Huang Y, Wang J, Wang J, Liu Q 2019 Journal of Magnetism and Magnetic Materials 491 165544
Google Scholar
Metrics
- Abstract views: 402
- PDF Downloads: 0
- Cited By: 0