Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impedance characteristics of magnetoelectric antennas

Song Kai-Xin Min Shu-Gang Gao Jun-Qi Zhang Shuang-Jie Mao Zhi-Neng Shen Ying Chu Zhao-Qiang

Citation:

Impedance characteristics of magnetoelectric antennas

Song Kai-Xin, Min Shu-Gang, Gao Jun-Qi, Zhang Shuang-Jie, Mao Zhi-Neng, Shen Ying, Chu Zhao-Qiang
PDF
HTML
Get Citation
  • Mechanical antenna, a novel scheme for realizing very low frequency (VLF) and portable transmitters, has been investigated recently. In this work, the impedance characteristics of 1-1 type of and 2-1 type of magnetoelectric (ME) mechanical antennas are systematically studied and compared with each other. Based on the measured frequency-impedance curves and the corresponding modified Butterworth-van Dyke (MBVD) model, three characteristic frequency points, i.e. the minimum impedance frequency $ {f}_{\rm{m}} $, the series resonance frequency $ {f}_{\rm{s}} $, and the resonance frequency $ {f}_{\rm{r}} $ are obtained and discussed. On this basis, the influence of driving voltage, bias magnetic field, and the quality factor (Q value) on ME antenna impedance characteristics are experimentally explored. Finally, the reactance components of both 1-1 type of and 2-1 type of ME antenna are collected by referring to the actual working frequency $ {f}_{\rm{d}} $. Experimental results prove that the resonant ME antennas are basically pure resistive vibrators, while an ME antenna with high Q value normally fails to support high driving field because of the low resistance (< 100 Ω) and the strong nonlinearity. Thus, the field radiation capability in 2-1 type of ME antenna is higher than that in 1-1 typed one. This work provides the ideas for choosing Q value and further optimizing a magnetoelectric antenna based on the understanding of its impedance characteristics.

    Erratum: Impedance characteristics of magnetoelectric antennas [Acta Phys. Sin. 2022, 71(24): 247502]

    Song Kai-Xin, Min Shu-Gang, Gao Jun-Qi, Zhang Shuang-Jie, Mao Zhi-Neng, Shen Ying, Chu Zhao-Qiang. Erratum: Impedance characteristics of magnetoelectric antennas [Acta Phys. Sin. 2022, 71(24): 247502]. Acta Phys. Sin., 2023, 72(3): 039901. doi: 10.7498/aps.71.20220591
      Corresponding author: Gao Jun-Qi, gaojunqi@hrbeu.edu.cn ; Chu Zhao-Qiang, zhaoqiangchu@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52102127), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021QF021), and the Foundation of National Defense Key Laboratory, China (Grant No. KY10500220007).
    [1]

    Domann J P, Carman G P 2017 J. Appl. Phys. 121 044905Google Scholar

    [2]

    Troy Olsson P M 2017 A MEchanically Based Antenna (AMEBA) (DARP: HR001117S0007)

    [3]

    Bickford J A, Duwel A E, Weinberg M S, McNabb R S, Freeman D K, Ward P A 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar

    [4]

    Manteghi M 2019 IEEE Antennas Propag. 61 14

    [5]

    施伟, 周强, 刘斌 2019 物理学报 68 188401Google Scholar

    Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar

    [6]

    崔勇, 王琛, 宋晓 2021 自动化学报 47 1335Google Scholar

    Cui Y, Wang C, Song X 2021 Acta Automatica. Sin. 47 1335Google Scholar

    [7]

    丁春全, 宋海洋 2019 舰船电子工程 39 166Google Scholar

    Ding C Q, Song H Y 2019 Ship Electron. Eng. 39 166Google Scholar

    [8]

    周强, 施伟, 刘斌, 魏志虎, 何攀峰, 张江 2020 国防科技大学学报 4 128Google Scholar

    Zhou Q, Shi W, Liu B, Wei Z H, He P F, Zhang J 2020 J. National Univ. Defense Tech. 4 128Google Scholar

    [9]

    王晓煜, 张雯厚, 孙丽慧, 周鑫, 曹振新, 全鑫 2021 电子学报 49 824Google Scholar

    Wang X Y, Zhang W H, Sun L H, Zhou X, Cao Z X, Quan X 2021 Acta Electron. Sin. 49 824Google Scholar

    [10]

    Xu J R, Leung C M, Zhuang X, Li J F, Bhardwaj S, Volakis J, Viehland D 2019 Sensors 19 853Google Scholar

    [11]

    Luong K Q T, Wang Y 2022 Sensors 22 455Google Scholar

    [12]

    Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006Google Scholar

    [13]

    Zhou P, Popov M A, Liu Y, Bidthanapally R, Filippov D A, Zhang T, Qi Y, Shah P J, Howe B M, McConney M E, Luo Y, Sreenivasulu G, Srinivasan G, Page M R 2019 Phys. Rev. Mater. 3 044403Google Scholar

    [14]

    Kemp M A, Franzi M, Haase A, Jongewaard E, Whittaker M T, Kirkpatrick M, Sparr R 2019 Nat. Commun. 10 1715Google Scholar

    [15]

    Nan T X, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [16]

    Schneider J D, Domann J P, Panduranga M K, Tiwari S, Shirazi P, Yao Z, Sennott C, Shahan D, Selvin S, McKnight G, Wall W, Candler R N, Wang Y E, Carman G P 2019 J. Appl. Phys. 126 224104Google Scholar

    [17]

    Hassanien A E, Breen M, Li M H, Gong S 2020 J. Appl. Phys. 127 014903Google Scholar

    [18]

    聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin M I, 汪尧进 2021 物理学报 70 247501Google Scholar

    Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov Oleg, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501Google Scholar

    [19]

    崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 164Google Scholar

    Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys Sin. 69 164Google Scholar

    [20]

    王琛, 崔勇, 宋晓, 袁海文 2020 物理学报 69 321Google Scholar

    Wang C, Cui Y, Song X, Yuan H W 2020 Acta Phys. Sin. 69 321Google Scholar

    [21]

    Dong C, Wang X, Lin H, Gao Y, Sun N X, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Letters 19 398Google Scholar

    [22]

    Chu Z, Dong C, Tu C, He Y, Liang X, Wang J, Wei Y, Chen H, Gao X, Lu C, Zhu Z, Lin Y, Dong S, McCord J, Sun N X 2019 Phys. Rev. Appl. 12 044001Google Scholar

    [23]

    Chu Z, Gao J, Sun Z, Mao Z, Zhang S, Shen Y, Dong S 2021 Appl. Phys. Lett. 119 182901Google Scholar

    [24]

    Chu Z, Shi H, Shi W, Liu G, Wu J, Yang J, Dong S 2017 Adv. Mater. 29 1606022Google Scholar

    [25]

    Dong S, Zhai J, Li J, Viehland D 2006 Appl. Phys. Lett. 89 252904Google Scholar

    [26]

    Cho K H, Priya S 2011 Appl. Phys. Lett. 98 232904Google Scholar

    [27]

    Chen L, Wang Y 2021 Materials (Basel) 14 4730

    [28]

    Karapetyan G, Kaysashev V, Kutepov M, Minasyan T, Kalinin V, Kislitsyn V, Kislitsyn V, Kaidashev E 2020 J. Adv. Dielect. 10 2060009Google Scholar

  • 图 1  (a) 1-1型和(b) 2-1型磁电机械天线结构示意图及实物图; (c) 1-1型和(d) 2-1型磁电机械天线的正、逆磁电系数的频响曲线; 对于正磁电系数的测量, 激励磁场为50 nT; 对于逆磁电系数的测量, 驱动电压为0.7 V

    Figure 1.  Schematic diagram and the snapshot of 1-1 type (a) of and 2-1 type (b) of magnetoelectric antenna; (c), (d) the direct magnetoelectric coefficient $ {\alpha }_{\rm{M}\rm{E}} $ and the converse counterpart $ {\alpha }_{\rm{E}\rm{M}} $ as a function of driving frequency for 1-1 type (c) of and 2-1 type (d) of magnetoelectric antenna. The driven magnetic field for direct magnetoelectric coefficient measurement and the driven voltage for converse magnetoelectric coefficient measurement is 50 nT and 0.7 V, respectively.

    图 2  不同驱动条件下磁电机械天线的阻抗特性 (a), (b) 不同驱动电压下(a) 1-1型和(b) 2-1型磁电机械天线的阻抗、阻抗角频响曲线; (c), (d) 不同直流偏置磁场下(c) 1-1型和(d) 2-1型磁电机械天线的阻抗频响曲线

    Figure 2.  Impedance characteristics of 1-1 type (a), (c) of and 2-1 type (b), (d) of magnetoelectric antenna under different drivenconditions: (a), (b) Different driven voltages with constant bias fields; (c), (d) different bias fields with constant driven voltage.

    图 3  磁电机械天线的等效电路MBVD模型

    Figure 3.  Equivalent circuit MBVD model of magnetoelectric antenna.

    图 4  (a), (c) 1-1型和(b), (d) 2-1型磁电机械天线的实测阻抗曲线及其拟合计算结果. (c), (d)分别标注了对应的3种特征频率$ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $

    Figure 4.  Measured and the fitted impedance curves for 1-1 type (a), (c) of and the 2-1 type (b), (d) of magnetoelectric antenna. Three kinds of resonance frequencies $ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $ are marked on panel (c) and (d).

    图 5  (a), (c) 1-1型和(b), (d) 2-1型磁电机械天线的3种特征频率($ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $)与驱动电压(a), (b)和偏置磁场(c), (d)的关系.

    Figure 5.  Three kinds of resonance frequencies $ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $ for 1-1 type (a), (c) of and 2-1 type (b), (d) of magnetoelectric antenna as a function of the driven voltage (a), (b) and the applied bias field (c), (d).

    图 6  不同驱动电压下, 1-1型(a)和2-1型(b)磁电机械天线辐射场强(以接收螺线管中的感应电流为替代测试对象)的扫频曲线;不同驱动电压下, 1-1型(c)和2-1型(d)磁电机械天线的3种特征频率与实际工作频率(对应于接收信号频响曲线的最高值); 不同激励电压下1-1型(e)和2-1型(f)磁电机械天线实际工作的电阻和相角

    Figure 6.  Induced current in the pick-up coil as a function of the driving frequency under different driving voltages for 1-1 type (a) of and 2-1 type (b) of magnetoelectric antenna; three kinds of resonance frequencies ($ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $) and the working frequency $ {f}_{\rm{d}} $ as a function of the driving voltages for 1-1 type (c) of and 2-1 type (d) of magnetoelectric antenna; the resistance component and the phase angle of 1-1 type (e) of and 2-1 type (f) of magnetoelectric antenna under different driving voltage.

    图 7  1-1型和2-1型磁电机械天线辐射能力对比 (a) 1-1型磁电机械天线在正向扫场下的辐射磁场大小; (b) 2-1型磁电机械天线在正反向扫场下的辐射磁场

    Figure 7.  Comparison of the radiation capability of magnetoelectric antennas with different Q values: The received magnetic field from 1-1 type (a) of and 2-1 type (b) of magnetoelectric antenna by electric field sweeping.

  • [1]

    Domann J P, Carman G P 2017 J. Appl. Phys. 121 044905Google Scholar

    [2]

    Troy Olsson P M 2017 A MEchanically Based Antenna (AMEBA) (DARP: HR001117S0007)

    [3]

    Bickford J A, Duwel A E, Weinberg M S, McNabb R S, Freeman D K, Ward P A 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar

    [4]

    Manteghi M 2019 IEEE Antennas Propag. 61 14

    [5]

    施伟, 周强, 刘斌 2019 物理学报 68 188401Google Scholar

    Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar

    [6]

    崔勇, 王琛, 宋晓 2021 自动化学报 47 1335Google Scholar

    Cui Y, Wang C, Song X 2021 Acta Automatica. Sin. 47 1335Google Scholar

    [7]

    丁春全, 宋海洋 2019 舰船电子工程 39 166Google Scholar

    Ding C Q, Song H Y 2019 Ship Electron. Eng. 39 166Google Scholar

    [8]

    周强, 施伟, 刘斌, 魏志虎, 何攀峰, 张江 2020 国防科技大学学报 4 128Google Scholar

    Zhou Q, Shi W, Liu B, Wei Z H, He P F, Zhang J 2020 J. National Univ. Defense Tech. 4 128Google Scholar

    [9]

    王晓煜, 张雯厚, 孙丽慧, 周鑫, 曹振新, 全鑫 2021 电子学报 49 824Google Scholar

    Wang X Y, Zhang W H, Sun L H, Zhou X, Cao Z X, Quan X 2021 Acta Electron. Sin. 49 824Google Scholar

    [10]

    Xu J R, Leung C M, Zhuang X, Li J F, Bhardwaj S, Volakis J, Viehland D 2019 Sensors 19 853Google Scholar

    [11]

    Luong K Q T, Wang Y 2022 Sensors 22 455Google Scholar

    [12]

    Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006Google Scholar

    [13]

    Zhou P, Popov M A, Liu Y, Bidthanapally R, Filippov D A, Zhang T, Qi Y, Shah P J, Howe B M, McConney M E, Luo Y, Sreenivasulu G, Srinivasan G, Page M R 2019 Phys. Rev. Mater. 3 044403Google Scholar

    [14]

    Kemp M A, Franzi M, Haase A, Jongewaard E, Whittaker M T, Kirkpatrick M, Sparr R 2019 Nat. Commun. 10 1715Google Scholar

    [15]

    Nan T X, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [16]

    Schneider J D, Domann J P, Panduranga M K, Tiwari S, Shirazi P, Yao Z, Sennott C, Shahan D, Selvin S, McKnight G, Wall W, Candler R N, Wang Y E, Carman G P 2019 J. Appl. Phys. 126 224104Google Scholar

    [17]

    Hassanien A E, Breen M, Li M H, Gong S 2020 J. Appl. Phys. 127 014903Google Scholar

    [18]

    聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin M I, 汪尧进 2021 物理学报 70 247501Google Scholar

    Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov Oleg, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501Google Scholar

    [19]

    崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 164Google Scholar

    Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys Sin. 69 164Google Scholar

    [20]

    王琛, 崔勇, 宋晓, 袁海文 2020 物理学报 69 321Google Scholar

    Wang C, Cui Y, Song X, Yuan H W 2020 Acta Phys. Sin. 69 321Google Scholar

    [21]

    Dong C, Wang X, Lin H, Gao Y, Sun N X, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Letters 19 398Google Scholar

    [22]

    Chu Z, Dong C, Tu C, He Y, Liang X, Wang J, Wei Y, Chen H, Gao X, Lu C, Zhu Z, Lin Y, Dong S, McCord J, Sun N X 2019 Phys. Rev. Appl. 12 044001Google Scholar

    [23]

    Chu Z, Gao J, Sun Z, Mao Z, Zhang S, Shen Y, Dong S 2021 Appl. Phys. Lett. 119 182901Google Scholar

    [24]

    Chu Z, Shi H, Shi W, Liu G, Wu J, Yang J, Dong S 2017 Adv. Mater. 29 1606022Google Scholar

    [25]

    Dong S, Zhai J, Li J, Viehland D 2006 Appl. Phys. Lett. 89 252904Google Scholar

    [26]

    Cho K H, Priya S 2011 Appl. Phys. Lett. 98 232904Google Scholar

    [27]

    Chen L, Wang Y 2021 Materials (Basel) 14 4730

    [28]

    Karapetyan G, Kaysashev V, Kutepov M, Minasyan T, Kalinin V, Kislitsyn V, Kislitsyn V, Kaidashev E 2020 J. Adv. Dielect. 10 2060009Google Scholar

  • [1] Song Kai-Xin, Min Shu-Gang, Gao Jun-Qi, Zhang Shuang-Jie, Mao Zhi-Neng, Shen Ying, Chu Zhao-Qiang. Erratum: Impedance characteristics of magnetoelectric antennas [Acta Phys. Sin. 2022, 71(24): 247502]. Acta Physica Sinica, 2023, 72(3): 039901. doi: 10.7498/aps.72.039901
    [2] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [3] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [4] Cui Yong, Wu Ming, Song Xiao, Huang Yu-Ping, Jia Qi, Tao Yun-Fei, Wang Chen. Research progress of small low-frequency transmitting antenna. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [5] Wang Chen, Cui Yong, Song Xiao, Yuan Hai-Wen. Magnetic field propagation model of low frequency/very low communication based on mechanical antenna of electret. Acta Physica Sinica, 2020, 69(15): 158401. doi: 10.7498/aps.69.20200314
    [6] Shi Wei, Zhou Qiang, Liu Bin. Performance analysis of spinning magnet as mechanical antenna. Acta Physica Sinica, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [7] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [8] Wu Mei-Xia, Li Man-Rong. Multiferroic properties of exotic double perovskite A2BB' O6. Acta Physica Sinica, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [9] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [10] Shen Jian-Xin, Shang Da-Shan, Sun Young. Fundamental circuit element and nonvolatile memory based on magnetoelectric effect. Acta Physica Sinica, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [11] Huang Ying-Zhuang,  Qi Yan,  Du An,  Liu Jia-Hong,  Ai Chuan-Wei,  Dai Hai-Yan,  Zhang Xiao-Li,  Huang Yu-Yan. Magnetoelectric coupling and external field modulation of a composite multiferroic chain. Acta Physica Sinica, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [12] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [13] Yuan Chang-Lai, Zhou Xiu-Juan, Xuan Min-Jie, Xu Ji-Wen, Yang Yun, Liu Xin-Yu. Preparation and magnetoelectric characteristics of K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4 composite ceramics. Acta Physica Sinica, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [14] Song Gu-Zhou, Ma Ji-Ming, Wang Kui-Lu, Zhou Ming. Analysis of figure of merit for thick pinhole imaging. Acta Physica Sinica, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [15] Zhou Wen-Liang, Xia Kun, Xu Da, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. Magnetoelectric properties of quantum paraelectric EuTiO3 materials on the strain effect. Acta Physica Sinica, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [16] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [17] Deng Heng, Yang Chang-Ping, Huang Chang, Xu Ling-Fang. Magnetically correlated I-V nonlinearity and electrical transport property of the double-layered perovskite La1.8Ca1.2Mn2O7 compound. Acta Physica Sinica, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [18] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [19] Gao Jian-Sen, Zhang Ning. Influence of iron doping level upon magnetoelectric coupling in BaTi1-zFezO3+δ-Tb1-xDyxFe2-y bilayer composites. Acta Physica Sinica, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [20] Yang Ying, Li Qi-Chang, Liu Jun-Ming, Liu Zhi-Guo. Magnetic and dielectric properties of ferroelectromagent Pb(Fe1/2 Nb1/2)O3. Acta Physica Sinica, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
Metrics
  • Abstract views:  5727
  • PDF Downloads:  180
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2022
  • Accepted Date:  19 May 2022
  • Available Online:  08 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回