-
Multiferroics, showing simultaneous electric and magnetic degree of freedom, has aroused increasing interest due to tailored multiferroic properties and magneto-electric coupling for shaping the development of energy-efficient multifunctional devices. Now, the multiferroics can be classified as two groups:1) inorganic multiferroics, which can be single-phase, multi-phases oxide multiferroic or multiferroic heterojunction and 2) organic counterpart, which is mostly determined by instinct charge-transfer behavior. But it is difficult to find the polarization and the magnetization co-exist in a single-phase oxide multiferroic material, and their coupling range in the multiferroic heterojunction is only several atomic layers, which limits the applications. As a result, more and more different types of organic multiferroics have been studied. Some organic complexes can display dual ferroelectric and ferromagnetic properties at ambient temperature, e.g. thiophene-fullerene donor-acceptor charge-transfer networks. The organic charge-transfer complex is based on electron donor (D+) and acceptor (A-) assembly. D+A- are long-range ordering, the excitons have s lifetime and 1/2 spin, which contributes to the room temperature ferroelectricity and ferromagnetism. The excitons can be excited by external magnetic field, electric field, illumination and stress, and eventually influence the polarization, magnetization and magnetoelectric coupling coefficient. However, there are still many problems to be solved, i.e., searching for new charge-transfer systems and preparing supramolecular co-crystal with ordered molecular chain, further improving magnetoelectric properties; developing the heterojunction technology and epitaxial growth of organic ferroelectric or ferromagnetic systems on excited organic films, which is expected to greatly improve their magnetoelectric coupling effects; inventing more new charge transport organic multiferroic devices to extend the application scope of new multiferroic devices in actual industrial production. Generally speaking, the organic charge-transfer complexes not only greatly enrich the room temperature multiferroics materials, but also provide the technical basis for developing the new multifunctional electronic devices.
-
Keywords:
- organic multiferroics /
- magneto-electric coupling /
- charge-transfer
[1] Gao W X, Brennan R, Hu Y, Wuttig M, Yuan G L, Quandt E, Ren S Q 2018 Mater. Today (In Press) DOI: 101016/j.mattod.201801032
[2] Astrov D 1960 Sov. Phys. JETP 11 708
[3] Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628
[4] Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 96 182501
[5] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[6] Martins P, Lanceros-Mendez S 2013 Adv. Funct. Mater. 23 3371
[7] Zavaliche F, Zhao T, Zheng H, Straub F, Cruz M P, Yang P L, Hao D, Ramesh R 2007 Nano Lett. 7 1586
[8] Chou C C, Taran S, Her J L, Sun C P, Huang C L, Sakurai H, Belik A A, Takayama-Muromachi E, Yang H D 2008 Phys. Rev. B 78 092404
[9] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V 2003 Science 34 1719
[10] Ratcliff W, Lynn J W, Kiryukhin V, Jain P, Fitzsimmons M R 2016 npj Quantum Mater. 1 16003
[11] Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]
[12] Wang F, Shen S P, Sun Y 2016 Chin. Phys. B 25 087503
[13] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55
[14] Al Qahtani M S, Alshammari M S, Blythe H J, Fox A M, Gehring G A, Andreev N, Chichkov V, Mukovskii Y 2012 J. Phys.: Conf. Ser. 391 012083
[15] Arkenbout A H, Palstra T T M, Siegrist T, Kimura T 2006 Phys. Rev. B 74 184431
[16] Lawes G, Kenzelmann M, Rogado N, Kim K H, Jorge G A, Cava R J, Aharony A, Entin-Wohlman O, Harris A B, Yildirim T, Huang Q Z, Park S, Broholm C, Ramirez A P 2004 Phys. Rev. Lett. 93 247201
[17] Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321
[18] Cheong S W, Talbayev D, Kiryukhin V, Saxena A 2018 npj Quantum Mater. 3 19
[19] Sergienko I A, Dagotto E 2006 Phys. Rev. B 73 094434
[20] Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S W 2009 Phys. Rev. B 79 134120
[21] Bukhari S H, Ahmad J 2017 Chin. Phys. B 26 018103
[22] Choi T, Horibe Y, Yi H T, Choi Y J, Wu W D, Cheong S W 2010 Nat. Mater. 9 253
[23] Chatterji T, Ouladdiaf B, Henry P F, Bhattacharya D 2012 J. Phys.: Condens. Matter 24 336003
[24] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F 2004 Science 303 661
[25] Pato-Doldan B, Gomez-Aguirre L C, Bermudez-Garcia J M, Sanchez-Andujar M, Fondado A, Mira J, Castro-Garcia S, Senaris-Rodriguez M A 2013 RSC Adv. 3 22404
[26] Xu G C, Zhang W, Ma X M, Chen Y H, Zhang L, Cai H L, Wang Z M, Xiong R G, Gao S 2011 J. Am. Chem. Soc. 133 14948
[27] Fu D W, Zhang W, Cai H L, Zhang Y, Ge J Z, Xiong R G, Huang S D, Nakamura T 2011 Angew. Chem. Int. Ed. Engl. 50 11947
[28] Jain P, Stroppa A, Nabok D, Marino A, Rubano A, Paparo D, Matsubara M, Nakotte H, Fiebig M, Picozzi S, Choi E S, Cheetham A K, Draxl C, Dalal N S, Zapf V S 2016 npj Quantum Mater. 1 16012
[29] Tian Y, Cong J Z, Shen S P, Chai Y S, Yan L Q, Wang S G, Sun Y 2014 Phys. Status Solidi RRL 8 91
[30] Tian Y, Stroppa A, Chai Y S, Yan L Q, Wang S G, Barone P, Picozzi S, Sun Y 2014 Sci. Rep. 4 6062
[31] Tian Y, Wang W, Chai Y S, Cong J Z, Shen S P, Yan L Q, Wang S G, Han X F, Sun Y 2014 Phys. Rev. Lett. 112 017202
[32] Tayi A S, Shveyd A K, Sue A C, Szarko J M, Rolczynski B S, Cao D, Kennedy T J, Sarjeant A A, Stern C L, Paxton W F 2012 Nature 488 485
[33] Wang Y, Liu J L, Tran H D, Mecklenburg M, Guan X N, Stieg A Z, Regan B C, Martin D C, Kaner R B 2012 J. Am. Chem. Soc. 134 9251
[34] Zhang Z L, Li H S, Luo Z P, Chang S Q, Li Z, Guan M M, Zhou Z Y, Liu M, Grossman J C, Ren S Q 2017 Chem. Mater. 29 9851
[35] Qin W, Jasion D, Chen X M, Wuttig M, Ren S Q 2014 ACS Nano 8 3671
[36] Ren S Q, Wuttig M 2012 Adv. Mater. 24 724
[37] Lohrman J, Liu Y Y, Duan S F, Zhao X Y, Wuttig M, Ren S Q 2013 Adv. Mater. 25 783
[38] Qin W, Lohrman J, Ren S Q 2014 Angew. Chem. Int. Ed. Engl. 53 7316
[39] Wei Q, Gong M G, Chen X M, Shastry T A, Sakidja R, Yuan G L, Hersam M C, Wuttig M, Ren S Q 2015 Adv. Mater. 27 734
[40] Kagawa F, Horiuchi S, Tokunaga M, Fujioka J, Tokura Y 2010 Nat. Phys. 6 169
[41] Torrance J B, Girlando A, Mayerle J J, Crowley J I, Lee V Y, Batail P, Laplaca S J 1981 Phys. Rev. Lett. 47 1747
[42] Lamola A A, Hammond G S 1965 J. Chem. Phys. 43 2129
[43] Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449
[44] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789
[45] Brdas J L, Beljonne D, Coropceanu V, Cornil J 2004 Chem. Rev. 104 4971
[46] Hu B, Wu Y 2007 Nat. Mater. 6 985
[47] Qin W, Gao K, Yin S, Xie S J 2013 J. Appl. Phys. 113 193301
[48] Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286
[49] Majumdar S, Majumdar H S, Aarnio H, Vanderzande D, Laiho R, Osterbacka R 2009 Phys. Rev. B 79 201202
[50] Baldo M A, OBrien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R 1998 Nature 395 151
[51] Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2013 Chem. Soc. Rev. 42 2824
[52] Chen X M 2016 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [陈孝敏 2016 博士学位论文 (南京: 南京理工大学)]
[53] Armstrong J N, Hua S Z, Chopra H D 2013 Phys. Status Solidi B 250 387
[54] Callen E R 1960 J. Appl. Phys. 31 S149
[55] Qin W, Chen X M, Li H S, Gong M G, Yuan G L, Grossman J C, Wuttig M, Ren S Q 2015 ACS Nano 9 9373
[56] Xu B B, Li H S, Hall A, Gao W X, Gong M G, Yuan G L, Grossman J, Ren S Q 2015 Sci. Adv. 1 e1501264
[57] Jin J Z, Lu S G, Chanthad C, Zhang Q M, Haque M A, Wang Q 2011 Adv. Mater. 23 3853
[58] Carvell J, Cheng R H, Dowben P A, Yang Q 2013 Appl. Phys. Lett. 103 072902
-
[1] Gao W X, Brennan R, Hu Y, Wuttig M, Yuan G L, Quandt E, Ren S Q 2018 Mater. Today (In Press) DOI: 101016/j.mattod.201801032
[2] Astrov D 1960 Sov. Phys. JETP 11 708
[3] Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628
[4] Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 96 182501
[5] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[6] Martins P, Lanceros-Mendez S 2013 Adv. Funct. Mater. 23 3371
[7] Zavaliche F, Zhao T, Zheng H, Straub F, Cruz M P, Yang P L, Hao D, Ramesh R 2007 Nano Lett. 7 1586
[8] Chou C C, Taran S, Her J L, Sun C P, Huang C L, Sakurai H, Belik A A, Takayama-Muromachi E, Yang H D 2008 Phys. Rev. B 78 092404
[9] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V 2003 Science 34 1719
[10] Ratcliff W, Lynn J W, Kiryukhin V, Jain P, Fitzsimmons M R 2016 npj Quantum Mater. 1 16003
[11] Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]
[12] Wang F, Shen S P, Sun Y 2016 Chin. Phys. B 25 087503
[13] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55
[14] Al Qahtani M S, Alshammari M S, Blythe H J, Fox A M, Gehring G A, Andreev N, Chichkov V, Mukovskii Y 2012 J. Phys.: Conf. Ser. 391 012083
[15] Arkenbout A H, Palstra T T M, Siegrist T, Kimura T 2006 Phys. Rev. B 74 184431
[16] Lawes G, Kenzelmann M, Rogado N, Kim K H, Jorge G A, Cava R J, Aharony A, Entin-Wohlman O, Harris A B, Yildirim T, Huang Q Z, Park S, Broholm C, Ramirez A P 2004 Phys. Rev. Lett. 93 247201
[17] Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321
[18] Cheong S W, Talbayev D, Kiryukhin V, Saxena A 2018 npj Quantum Mater. 3 19
[19] Sergienko I A, Dagotto E 2006 Phys. Rev. B 73 094434
[20] Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S W 2009 Phys. Rev. B 79 134120
[21] Bukhari S H, Ahmad J 2017 Chin. Phys. B 26 018103
[22] Choi T, Horibe Y, Yi H T, Choi Y J, Wu W D, Cheong S W 2010 Nat. Mater. 9 253
[23] Chatterji T, Ouladdiaf B, Henry P F, Bhattacharya D 2012 J. Phys.: Condens. Matter 24 336003
[24] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F 2004 Science 303 661
[25] Pato-Doldan B, Gomez-Aguirre L C, Bermudez-Garcia J M, Sanchez-Andujar M, Fondado A, Mira J, Castro-Garcia S, Senaris-Rodriguez M A 2013 RSC Adv. 3 22404
[26] Xu G C, Zhang W, Ma X M, Chen Y H, Zhang L, Cai H L, Wang Z M, Xiong R G, Gao S 2011 J. Am. Chem. Soc. 133 14948
[27] Fu D W, Zhang W, Cai H L, Zhang Y, Ge J Z, Xiong R G, Huang S D, Nakamura T 2011 Angew. Chem. Int. Ed. Engl. 50 11947
[28] Jain P, Stroppa A, Nabok D, Marino A, Rubano A, Paparo D, Matsubara M, Nakotte H, Fiebig M, Picozzi S, Choi E S, Cheetham A K, Draxl C, Dalal N S, Zapf V S 2016 npj Quantum Mater. 1 16012
[29] Tian Y, Cong J Z, Shen S P, Chai Y S, Yan L Q, Wang S G, Sun Y 2014 Phys. Status Solidi RRL 8 91
[30] Tian Y, Stroppa A, Chai Y S, Yan L Q, Wang S G, Barone P, Picozzi S, Sun Y 2014 Sci. Rep. 4 6062
[31] Tian Y, Wang W, Chai Y S, Cong J Z, Shen S P, Yan L Q, Wang S G, Han X F, Sun Y 2014 Phys. Rev. Lett. 112 017202
[32] Tayi A S, Shveyd A K, Sue A C, Szarko J M, Rolczynski B S, Cao D, Kennedy T J, Sarjeant A A, Stern C L, Paxton W F 2012 Nature 488 485
[33] Wang Y, Liu J L, Tran H D, Mecklenburg M, Guan X N, Stieg A Z, Regan B C, Martin D C, Kaner R B 2012 J. Am. Chem. Soc. 134 9251
[34] Zhang Z L, Li H S, Luo Z P, Chang S Q, Li Z, Guan M M, Zhou Z Y, Liu M, Grossman J C, Ren S Q 2017 Chem. Mater. 29 9851
[35] Qin W, Jasion D, Chen X M, Wuttig M, Ren S Q 2014 ACS Nano 8 3671
[36] Ren S Q, Wuttig M 2012 Adv. Mater. 24 724
[37] Lohrman J, Liu Y Y, Duan S F, Zhao X Y, Wuttig M, Ren S Q 2013 Adv. Mater. 25 783
[38] Qin W, Lohrman J, Ren S Q 2014 Angew. Chem. Int. Ed. Engl. 53 7316
[39] Wei Q, Gong M G, Chen X M, Shastry T A, Sakidja R, Yuan G L, Hersam M C, Wuttig M, Ren S Q 2015 Adv. Mater. 27 734
[40] Kagawa F, Horiuchi S, Tokunaga M, Fujioka J, Tokura Y 2010 Nat. Phys. 6 169
[41] Torrance J B, Girlando A, Mayerle J J, Crowley J I, Lee V Y, Batail P, Laplaca S J 1981 Phys. Rev. Lett. 47 1747
[42] Lamola A A, Hammond G S 1965 J. Chem. Phys. 43 2129
[43] Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449
[44] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789
[45] Brdas J L, Beljonne D, Coropceanu V, Cornil J 2004 Chem. Rev. 104 4971
[46] Hu B, Wu Y 2007 Nat. Mater. 6 985
[47] Qin W, Gao K, Yin S, Xie S J 2013 J. Appl. Phys. 113 193301
[48] Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286
[49] Majumdar S, Majumdar H S, Aarnio H, Vanderzande D, Laiho R, Osterbacka R 2009 Phys. Rev. B 79 201202
[50] Baldo M A, OBrien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R 1998 Nature 395 151
[51] Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2013 Chem. Soc. Rev. 42 2824
[52] Chen X M 2016 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [陈孝敏 2016 博士学位论文 (南京: 南京理工大学)]
[53] Armstrong J N, Hua S Z, Chopra H D 2013 Phys. Status Solidi B 250 387
[54] Callen E R 1960 J. Appl. Phys. 31 S149
[55] Qin W, Chen X M, Li H S, Gong M G, Yuan G L, Grossman J C, Wuttig M, Ren S Q 2015 ACS Nano 9 9373
[56] Xu B B, Li H S, Hall A, Gao W X, Gong M G, Yuan G L, Grossman J, Ren S Q 2015 Sci. Adv. 1 e1501264
[57] Jin J Z, Lu S G, Chanthad C, Zhang Q M, Haque M A, Wang Q 2011 Adv. Mater. 23 3853
[58] Carvell J, Cheng R H, Dowben P A, Yang Q 2013 Appl. Phys. Lett. 103 072902
Catalog
Metrics
- Abstract views: 8799
- PDF Downloads: 272
- Cited By: 0