Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge transfer cross sections of collisions of N3+ ions with He atoms in low energy region

LIN Xiaohe LIN Minjuan WANG Kun WU Yong REN Yuan WANG Yu LI Jiewei

Citation:

Charge transfer cross sections of collisions of N3+ ions with He atoms in low energy region

LIN Xiaohe, LIN Minjuan, WANG Kun, WU Yong, REN Yuan, WANG Yu, LI Jiewei
cstr: 32037.14.aps.74.20250581
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The collision process between N3+ ions and He atoms is of great significance in astrophysics, interstellar space and laboratory plasma environment. The single- and double-charge transfer processes for the collisions of N3+ with He atoms are studied by using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) methods are employed to obtain the adiabatic potentials and the radial and rotational coupling matrix elements that are required in the QMOCC calculation. In the present QMOCC calculations, 10 1Σ states, 8 1Π states and 4 1Δ states are considered, and total single- and double-charge transfer cross sections and state selection cross sections are calculated in an energy region from 3.16 × 10–3 eV–24 keV (i.e., 2.25 × 10–4 eV/u–1.73 keV/u). Comparison of our results with the previous theoretical and experimental results shows that our results agree well with the experimental values for the total double-charge transfer (DCT) cross sections. For the total single-charge transfer (SCT) cross sections, our QMOCC results are slightly higher than the experimental results in an energy region of 0.2–11 eV/u. When the energy is higher than 11 eV/u, the present QMOCC results are in good agreement with the experimental results. The total SCT cross section is significantly larger than the total DCT cross section, so SCT process is a dominant reaction process. For the SCT process, it can be observed that the charge transfer to N2+(2s2p2 2D) and N2+(2s22p 2P°) is very important. It should be noted that although we and Liu et al. (Phys. Rev. A 2011 84 042706) both used the QMOCC method to study the charge transfer cross section, our calculation results are still significantly different from their calculation results. It is due to the fact that Liu et al.’s calculations only considered 10 1Σ states and 8 1Π states, and ignored the effect of 1Δ states.The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00165.
      Corresponding author: WANG Yu, wangy@tyust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12203106, 12204288).
    [1]

    朱宇豪, 袁翔, 吴勇, 王建国 2023 物理学报 72 163401Google Scholar

    Zhu Y H, Yuan X, Wu Y, Wang J G 2023 Acta Phys. Sin. 72 163401Google Scholar

    [2]

    刘春华 2009 博士学位论文 (北京: 中国科学院大学)

    Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences

    [3]

    高志民, 陈熙萌, 刘兆远, 丁宝卫, 鲁彦霞, 付宏斌, 刘玉文, 杜娟, 崔莹, 邵剑雄, 张红强, 孙光智 2007 物理学报 56 2079Google Scholar

    Gao Z M, Chen X M, Liu Z Y, Ding B W, Lu Y X, Fu H B, Liu Y W, Du J, Cui Y, Shao J X, Zhang H Q, Sun G Z 2007 Acta Phys. Sin. 56 2079Google Scholar

    [4]

    林晓贺 2019 博士学位论文 (北京: 北京理工大学)

    Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [5]

    Rice J E, Marmar E S, Terry J L, Källne E, Källne J 1986 Phys. Rev. Lett. 56 50Google Scholar

    [6]

    Steigman G 1975 Astrophys J. 199 642Google Scholar

    [7]

    Liu X J, Wang J G, Qu Y Z, Buenker R J 2011 Phys. Rev. A 84 042706Google Scholar

    [8]

    Mondal M, Mandal B, Mistry T, Jana D, Purkait M 2024 Chin. Phys. B 33 113401Google Scholar

    [9]

    Kamber E Y, Akgüngör K, Leather C, Brenton A G 1996 Phys. Rev. A 54 1452Google Scholar

    [10]

    Ishii K, Itoh A, Okuno K 2004 Phys. Rev. A 70 042716Google Scholar

    [11]

    Gardner L D, Bayfield J E, Koch P M, et al. 1979 Phys. Rev. A 20 766Google Scholar

    [12]

    Xu J W, Zhu X L, Feng W T, et al. 2019 X-Ray Spectrometry 49 85Google Scholar

    [13]

    Lin M J, Li R, Lin X H, Ren X H 2024 IEEE Academic International Symposium on Optoelectronics and Micro electronics Technology (AISOMT) Harbin, China, November 21–22, 2024 p139

    [14]

    Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115Google Scholar

    [15]

    Buenker R J, Peyerimhoff S D 1974 Theoret. Chim. Acta 35 33Google Scholar

    [16]

    Krebs S, Buenker R J 1995 J. Chem. Phys. 103 5613Google Scholar

    [17]

    吴勇, 刘玲, 王建国 2008 物理学报 57 947Google Scholar

    Wu Y, Liu L, Wang J G 2008 Acta Phys. Sin. 57 947Google Scholar

    [18]

    Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y, Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202Google Scholar

    [19]

    Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846Google Scholar

    [20]

    Wu Y, Stancil P C, Liebermann H P, et al. 2011 Phys. Rev. A 84 022711Google Scholar

    [21]

    Kramida, A, Ralchenko Y, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) [2025-4-29]

    [22]

    Errea L F, Mendez L, Riera A 1982 J. Phys. B 15 101Google Scholar

    [23]

    Bacchus M C, Ceyzeriat P 1998 Phys. Rev. A 58 1162Google Scholar

    [24]

    Errea L F, Harel C, Jouini H, et al 1994 J. Phys. B 27 3603Google Scholar

    [25]

    Wang K, Dong C, Qu Y Z, et al. 2023 Chin. Phys. B 32 083103Google Scholar

    [26]

    Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, Buenker R J 2020 Chin. Phys. Lett. 37 023401Google Scholar

  • 图 1  NHe3+碰撞体系单重态的绝热势能曲线

    Figure 1.  Adiabatic potential curves of the singlet of NHe3+ collision system.

    图 2  NHe3+碰撞体系单重态相邻两1Σ态间的径向耦合矩阵元

    Figure 2.  Radial coupling matrix elements between the adjacent 1Σ states for NHe3+ collision system.

    图 3  NHe3+碰撞体系单重态相邻两1Π态间的径向耦合矩阵元

    Figure 3.  Radial coupling matrix elements between the adjacent 1Π states for NHe3+ collision system.

    图 4  NHe3+碰撞体系单重态相邻两1Δ态间的径向耦合矩阵元

    Figure 4.  Radial coupling matrix elements between the adjacent 1Δ states for NHe3+ collision system.

    图 5  NHe3+碰撞体系单重态部分重要的转动耦合矩阵元

    Figure 5.  Some important singlet rotational coupling matrix elements for NHe3+ collision system.

    图 6  N3+离子与基态He原子碰撞总的单、双电荷转移截面

    Figure 6.  Total single and double charge transfer cross sections in N3+-He collisions.

    图 7  N3+离子与基态He原子碰撞电荷转移形成N+离子的态选择截面

    Figure 7.  State selective cross sections for charge transfer to N+ ion in N3+-He collisions.

    图 8  N3+离子与基态He原子碰撞电荷转移形成N2+离子的态选择截面

    Figure 8.  State selective cross sections for charge transfer to N2+ ion in N3+-He collisions.

    表 1  NHe3+单重态渐近区各能级与NIST表[21]中结果的对比

    Table 1.  Compared the energy levels in the asymptotic region of the singlet state of NHe3+ with the results in NIST[21]

    渐进原子态 分子态 Energy/eV
    MRD-CI NIST[21] Errors
    N2+(2s22p 2Po)+He+(1s) 11Σ, 11Π 0.0000 0.0000 0.0000
    N2+(2s 2p2 2D)+He+(1s) 21Σ, 11Δ, 21Π 12.5087 12.5254 0.0167
    N2+(2s2p2 2P)+He+(1s) 31Π 18.0958 18.0863 0.0095
    N2+(2s2p2 2S)+He+(1s) 31Σ 16.2564 16.2425 0.0139
    N3+(2s2 1S)+He(1s2) 41Σ 22.8803 22.8579 0.0224
    N2+((2p3 2Do)+He+(1s) 41Π, 21Δ 25.1239 25.1780 0.0541
    N+(2s22p2 1D)+He2+ 51Σ, 51Π, 31Δ 26.7503 26.7150 0.0353
    N2+(2s23s 2S)+He+(1s) 61Σ 27.4341 37.4380 0.0039
    N2+(2p3 2Po)+He+(1s) 71Σ, 61Π 28.5454 28.5665 0.0211
    N+(2s22p2 1S)+He2+ 81Σ 28.9204 28.8690 0.0514
    N2+(2s23p 2Po)+He+(1s) 91Σ, 71Π 30.4405 30.4586 0.0181
    N2+(2s23d 2D)+He+(1s) 101Σ, 81Π, 41Δ 33.1233 33.1333 0.0100
    N2+(2s2p3s 2Po)+He+(1s) 111Σ, 91Π 36.8428 36.8421 0.0007
    N2+(2s2p3p 2P)+He+(1s) 101Π 38.2795 38.3274 0.0479
    DownLoad: CSV
  • [1]

    朱宇豪, 袁翔, 吴勇, 王建国 2023 物理学报 72 163401Google Scholar

    Zhu Y H, Yuan X, Wu Y, Wang J G 2023 Acta Phys. Sin. 72 163401Google Scholar

    [2]

    刘春华 2009 博士学位论文 (北京: 中国科学院大学)

    Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences

    [3]

    高志民, 陈熙萌, 刘兆远, 丁宝卫, 鲁彦霞, 付宏斌, 刘玉文, 杜娟, 崔莹, 邵剑雄, 张红强, 孙光智 2007 物理学报 56 2079Google Scholar

    Gao Z M, Chen X M, Liu Z Y, Ding B W, Lu Y X, Fu H B, Liu Y W, Du J, Cui Y, Shao J X, Zhang H Q, Sun G Z 2007 Acta Phys. Sin. 56 2079Google Scholar

    [4]

    林晓贺 2019 博士学位论文 (北京: 北京理工大学)

    Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [5]

    Rice J E, Marmar E S, Terry J L, Källne E, Källne J 1986 Phys. Rev. Lett. 56 50Google Scholar

    [6]

    Steigman G 1975 Astrophys J. 199 642Google Scholar

    [7]

    Liu X J, Wang J G, Qu Y Z, Buenker R J 2011 Phys. Rev. A 84 042706Google Scholar

    [8]

    Mondal M, Mandal B, Mistry T, Jana D, Purkait M 2024 Chin. Phys. B 33 113401Google Scholar

    [9]

    Kamber E Y, Akgüngör K, Leather C, Brenton A G 1996 Phys. Rev. A 54 1452Google Scholar

    [10]

    Ishii K, Itoh A, Okuno K 2004 Phys. Rev. A 70 042716Google Scholar

    [11]

    Gardner L D, Bayfield J E, Koch P M, et al. 1979 Phys. Rev. A 20 766Google Scholar

    [12]

    Xu J W, Zhu X L, Feng W T, et al. 2019 X-Ray Spectrometry 49 85Google Scholar

    [13]

    Lin M J, Li R, Lin X H, Ren X H 2024 IEEE Academic International Symposium on Optoelectronics and Micro electronics Technology (AISOMT) Harbin, China, November 21–22, 2024 p139

    [14]

    Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115Google Scholar

    [15]

    Buenker R J, Peyerimhoff S D 1974 Theoret. Chim. Acta 35 33Google Scholar

    [16]

    Krebs S, Buenker R J 1995 J. Chem. Phys. 103 5613Google Scholar

    [17]

    吴勇, 刘玲, 王建国 2008 物理学报 57 947Google Scholar

    Wu Y, Liu L, Wang J G 2008 Acta Phys. Sin. 57 947Google Scholar

    [18]

    Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y, Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202Google Scholar

    [19]

    Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846Google Scholar

    [20]

    Wu Y, Stancil P C, Liebermann H P, et al. 2011 Phys. Rev. A 84 022711Google Scholar

    [21]

    Kramida, A, Ralchenko Y, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) [2025-4-29]

    [22]

    Errea L F, Mendez L, Riera A 1982 J. Phys. B 15 101Google Scholar

    [23]

    Bacchus M C, Ceyzeriat P 1998 Phys. Rev. A 58 1162Google Scholar

    [24]

    Errea L F, Harel C, Jouini H, et al 1994 J. Phys. B 27 3603Google Scholar

    [25]

    Wang K, Dong C, Qu Y Z, et al. 2023 Chin. Phys. B 32 083103Google Scholar

    [26]

    Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, Buenker R J 2020 Chin. Phys. Lett. 37 023401Google Scholar

  • [1] TIAN Xin, SHU Pengli, ZHANG Ketong, ZENG Dechao, YAO Zhifei, ZHAO Bohui, REN Xiaosen, QIN Li, ZHU Qiang, WEI Jiuyan, WEN Huanfei, LI Yanjun, Yasuhiro Sugawara, TANG Jun, MA Zongmin, LIU Jun. Charge transfer characteristics of Au adsorption on CeO2(111) surface. Acta Physica Sinica, 2025, 74(5): 053101. doi: 10.7498/aps.74.20241522
    [2] NIU Jiajie, ZHANG Weiwei, QI Yueying, GAO Junwen. Theoretical study of state-selective charge exchange processes in collisions between highly charged N6+ ions and H atoms. Acta Physica Sinica, 2025, 74(15): 153402. doi: 10.7498/aps.74.20250541
    [3] Li Jiong-Yuan, Meng Ju, Wang Ke-Dong. Low-energy electron elastic scattering of $ {\mathbf{C}}_{4}^{-} $ anions: Resonance states and conformers. Acta Physica Sinica, 2024, 73(24): 243401. doi: 10.7498/aps.73.20241377
    [4] Zhang Ya-Jing, Wang Ming-Hao, Lei Zhao-Kang, Shen Wen-Jie, Ma Yan-Qiang, Mo Run-Yang. Acoustic scattering properties of multilayer membrane structured magnetic microbubbles. Acta Physica Sinica, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [5] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [6] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [7] Chen Xin, Yan Xiao-Hong, Xiao Yang. Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN. Acta Physica Sinica, 2015, 64(8): 087102. doi: 10.7498/aps.64.087102
    [8] Di Ma-Ke, Shen Guang-Xian, Zhao Yun-Qiang, Zeng Ruo-Sheng, Wang Rong-Kai. Theoretical calculation of the vib-rotational interaction potential and the scattering cross section for the Ar-H2 (D2, T2) collision system. Acta Physica Sinica, 2015, 64(13): 133101. doi: 10.7498/aps.64.133101
    [9] Xu Shi-Long, Hu Yi-Hua, Zhao Nan-Xiang, Wang Yang-Yang, Li Le, Guo Li-Ren. Impact of metal target’s atom lattice structure on its quantum radar cross-section. Acta Physica Sinica, 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [10] Gao Jing, Chang Kai-Nan, Wang Lu-Xia. Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system. Acta Physica Sinica, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [11] Gong Ming-Yan. Rotational excitation of He-BH collision system. Acta Physica Sinica, 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [12] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical calculation of the partial cross section in He-H2(D2,T2) collisions. Acta Physica Sinica, 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [13] Li Ying-Le, Huang Ji-Ying, Wang Ming-Jun. Investigation of electromagnetic complex scattering for spherical targets in Ku wave band. Acta Physica Sinica, 2008, 57(12): 7630-7634. doi: 10.7498/aps.57.7630
    [14] Yu Chun-Ri, Song Xiao-Shu, Cheng Xin-Lu, Yang Xiang-Dong, Shen Chuan-Sheng. The interaction potential of Ne-HF system and close coupling calculations of the scattering cross sections. Acta Physica Sinica, 2008, 57(6): 3446-3451. doi: 10.7498/aps.57.3446
    [15] Wang Rong-Kai, Shen Guang-Xian, Yu Chun-Ri, Yang Xiang-Dong. Theoretical calculation of the scattering cross section for He-HF(DF,TF) collision system. Acta Physica Sinica, 2008, 57(11): 6932-6938. doi: 10.7498/aps.57.6932
    [16] Yu Chun-Ri, Wang Rong-Kai, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical study of the effect of potential models on scattering cross sections for He-HF system. Acta Physica Sinica, 2007, 56(5): 2577-2584. doi: 10.7498/aps.56.2577
    [17] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [18] Ma Hua-Li, Li Ying-Lan, Yang Bao-Hua, Wang Feng. Structural and optical properties and charge transfer study for C60-PMMA composite films. Acta Physica Sinica, 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [19] Cao Zhu-Rong, Cai Xiao-Hong, Yu De-Yang, Yang Wei, Lu Rong-Chun, Shao Cao-Jie, Chen Xi-Meng. Study of the electron transfer in Xeq+-He collisions. Acta Physica Sinica, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. CHARGE TRANSFER IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
Metrics
  • Abstract views:  545
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2025
  • Accepted Date:  30 May 2025
  • Available Online:  11 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回