-
The collision processes between N3+ ions and He atom is of great significance in astrophysics, interstellar space and laboratory plasma environment. The single and double charge transfer processes for the collisions of N3+ with He atom are studied by using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) method was employed to obtain the adiabatic potentials and the radial and rotational coupling matrix elements that are required in the QMOCC calculation. In the present QMOCC calculations, 10 1Σ states, 8 1Π states and 4 1△ states are considered, and total single and double charge transfer cross sections and state selection cross sections are calculated in the energy region from 3.16×10-3 eV-24 keV (i.e., 2.25×10-4 eV/u - 1.73 keV/u). Compared our results with the previous theoretical and experimental results, it can be found that our results agree well with the experimental values for the total double charge transfer (DCT) cross sections. For the total single charge transfer (SCT) cross sections, our QMOCC results are slightly higher than the experimental results in the energy region 0.2-11 eV/u. When the energy higher than 11 eV/u, the present QMOCC results are in good agreement with the experimental results. The total SCT cross section is significantly larger than the total DCT cross section, so SCT processes is the dominant reaction process. For the SCT process, it can be observed that the charge transfer to N2+(2s2p2 2D) and N2+(2s22p 2Po) is very important. It should be noted that although we and Liu et al. [Phys. Rev. A 84, 042706, (2011)] both used the QMOCC method to study the charge transfer cross section, our calculation results are still significantly different from their calculation results. It is due to that Liu et al. calculations only considered 10 1Σ states and 8 1Π states, and ignored the effect of 1△ states.
-
Keywords:
- charge transfer /
- cross sections /
- high angular momentum states
-
[1] Zhu Y H, Yuan X, Wu Y, Wang J G 2023 Acta Phys. Sin. 72 163401 (朱宇豪, 袁翔, 吴勇, 王建国 2023 物理学报 72 163401)
[2] Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences) [刘春华 2009 博士学位论文 (北京: 中国科学院大学) ]
[3] Gao Z M, Chen X M, Liu Z Y, Ding B W, Lu Y X, Fu H B, Liu Y W, Du J, Cui Y, Shao J X, Zhang H Q, Sun G Z 2007 Acta Phys. Sin. 56 2079(高志民,陈熙萌,刘兆远,丁宝卫,鲁彦霞,付宏斌,刘玉文,杜娟,崔莹,邵剑雄,张红强,孙光智 2007 物理学报 56 2079)
[4] Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) [林晓贺 2019 博士学位论文 (北京: 北京理工大学) ]
[5] Rice J E, Marmar E S, Terry J L, Källne E, Källne J 1986 Phys. Rev. A 56 1
[6] Steigman G 1975 Astrophys J. 199 642
[7] Liu X J, Wang J G, Qu Y Z, Buenker R J 2011 Phys. Rev. A 84 042706
[8] Kamber E Y, Akgüngör K, Leather C, Brenton A G 1996 Phys. Rev. A 54 1452
[9] Ishii K, Itoh A, Okuno K 2004 Phys. Rev. A 70 042716
[10] Gardner L D, Bayfield J E, Koch P M, Sellin I A, Pegg D J, Peterson R S, Mallory M L, Crandall D H 1979 Phys. Rev. A 20 766
[11] Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115
[12] Buenker R J, Peyerimhoff S D 1974 Theoret. Chim. Acta 35 33
[13] Krebs S, Buenker R J 1995 J. Chem. Phys. 103 5613
[14] Wu Y, Liu L, Wang J G 2008 Acta Phys. Sin. 57 947(吴勇,刘玲,王建国 2008 物理学报 57 947)
[15] Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y,Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202
[16] Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 7
[17] Wu Y, Stancil P C, Liebermann H P, Funke P, Rai, S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84 022711
[18] Errea L F, Mendez L, Riera A 1982 J. Phys. B 15 101
[19] Bacchus M C, Ceyzeriat P 1998 Phys. Rev. A 58 1162
[20] Errea L F, Harel C, Jouini H, Mendez L, Pons B, Riera A 1994 J. Phys. B 27 3603
[21] Wang K, Dong C, Qu Y Z, Wu Y, Lin X H, Buenker R J 2023 Chin. Phys. B 32 083103
[22] Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, Buenker R J 2020 Chin. Phys. Lett. 37 023401
[23] Xu J W, Zhu X L, Feng W T, Zhao D M, Huang W Z, Guo D L, Gao Y, Zhang S F, Shan X, Chen X J, Ma X W 2019 xrs. 49 1
[24] Lin M J, Li R, Lin X H, Ren X H 2024 AISOMT 10992121 139
[25] Kramida, A, Ralchenko Y, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12)
[26] Mondal M, Mandal B, Mistry T, Jana D, Purkait M 2024 Chin. Phys. B 33 113401
Metrics
- Abstract views: 95
- PDF Downloads: 0
- Cited By: 0