Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetoelectric coupling and external field modulation of a composite multiferroic chain

Huang Ying-Zhuang Qi Yan Du An Liu Jia-Hong Ai Chuan-Wei Dai Hai-Yan Zhang Xiao-Li Huang Yu-Yan

Citation:

Magnetoelectric coupling and external field modulation of a composite multiferroic chain

Huang Ying-Zhuang, Qi Yan, Du An, Liu Jia-Hong, Ai Chuan-Wei, Dai Hai-Yan, Zhang Xiao-Li, Huang Yu-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multiferroics, can simultaneously exhibit multiple ferroic orders, including magnetic order, electric order and elastic order. Among these orders there exist intimately coupling effects. Multiferroics is significant for technological applications and fundamental research. The interplay between ferroelectricity and magnetism allows a magnetic control of ferroelectric properties and an electric control of magnetic properties, which can yield new device concepts. Recent experimental research shows that the Fe/BaTiO3 compound exhibits a prominent magnetoelectric effect, which originates from a change in bonding at the ferroelectric-ferromagnet interface that changes the interface magnetization when the electric polarization reverses, and thus offering a new route to controlling the magnetic properties of multilayer compound heterostructures by the electric field. Motivated by recent discoveries, in this paper we investigate theoretically the thermodynamics of a finite ferroelectric-ferromagnetic chain. A microscopic Heisenberg spin model is constructed to describe magnetoelectric properties of this composite chain, in which electric and magnetic subsystem are coupled through interfacial coupling. However, this vector model is not integrable in general. Therefore, one has to resort to numerical calculations for the thermodynamic properties of such a system. A uniform discrete spin vector is adopted here to approximate the original continuous one, and then the transfer-matrix method is employed to derive the analytical expression. To verify its rationality and effectiveness, the zero-field specific heat of a classical spin chain is solved based on this simplified model, and compared with the exact solution. It demonstrates that the main characteristics obtained by previous research are well reproduced here, and the whole variant trend is also identical. And then the quantities concerned in this paper are calculated, including the magnetization, polarization, magnetoelectric susceptibility, and specific heat. The influence of interfacial coupling, external field, and single-ion anisotropy on the magnetoelectric effect of the composite chain are examined in detail. The results reveal that the interfacial coupling enhances the magnetization and polarization. And in the magnetic field driven magnetoelectric susceptibility, the large magnetoelectric correlation effects are observed, indicating that the magnetic behaviors can be effectively controlled by an external electric field. Meanwhile, it is also found that the external field and single-ion anisotropy both suppress the magnetoelectric susceptibility. In addition, interestingly, the specific heat of system presents a three-peak structure under high electric field, which stems from the thermal excitation of spin states as well as dipole moment caused jointly by electric field and temperature.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804044, 11547236), the General Project of the Education Department of Liaoning Province, China (Grant No. L2015130), the Training Programs of Innovation and Entrepreneurship for Undergraduates of Dalian Minzu University (Grant No. 201712026069), and the Fundamental Research Funds for the Central Universities, China (Grant No. DCPY2016014).
    [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [2]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046

    [3]

    Wei L, Hu Z, Du G, Yuan Y, Wang J, Tu H, You B, Zhou S, Qu J, Liu H, Zheng R, Hu Y, Du J 2018 Adv. Mater. 30 1801885

    [4]

    Nozaki T, Sahashi M 2018 Jpn. J. Appl. Phys. 57 0902A2

    [5]

    Brivio S, Petti D, Bertacco R, Cezar J C 2011 Appl. Phys. Lett. 98 092505

    [6]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [7]

    Sahoo S, Polisetty S, Duan C G, Jaswal S S, Tsymbal E Y, Binek C 2007 Phys. Rev. B 76 092108

    [8]

    Horley P P, Sukhov A, Jia C, Martinez E, Berakdar J 2012 Phys. Rev. B 85 054401

    [9]

    Chotorlishvili L, Khomeriki R, Sukhov A, Ruffo S, Berakdar J 2013 Phys. Rev. Lett. 111 117202

    [10]

    Rondinelli J M, Stengel M, Spaldin N A 2008 Nat. Nanotechnol. 3 46

    [11]

    Cai T, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z, Shi J, Wang E 2009 Phys. Rev. B 80 140415

    [12]

    Sirker J 2010 Phys. Rev. B 81 014419

    [13]

    Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449

    [14]

    Paglan P A, Nguenang J P, Ruffo S 2018 Europhys. Lett. 122 68001

    [15]

    Sukhov A, Jia C, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201

    [16]

    Odkhuu D, Kioussis N 2018 Phys. Rev. B 97 094404

    [17]

    Wang Z, Grimson M J 2015 J. Appl. Phys. 118 124109

    [18]

    Gao R, Xu Z, Bai L, Zhang Q, Wang Z, Cai W, Chen G, Deng X, Cao X, Luo X, Fu C 2018 Adv. Electron. Mater. 4 1800030

    [19]

    Liu X T, Chen W J, Jiang G L, Wang B, Zheng Y 2016 Phys. Chem. Chem. Phys. 18 2850

    [20]

    Tokunaga Y, Taguchi Y, Arima T, Tokura Y 2012 Nat. Phys. 8 838

    [21]

    Gao X S, Liu J M, Chen X Y, Liu Z G 2000 J. Appl. Phys. 88 4250

    [22]

    Fisher M E 1964 Am. J. Phys. 32 343

    [23]

    Juhász Junger I, Ihle D 2005 Phys. Rev. B 72 064454

    [24]

    Härtel M, Richter J 2011 Phys. Rev. E 83 214412

    [25]

    Gong S J, Jiang Q 2004 Phys. Lett. A 333 124

    [26]

    Zhai L J, Wang H Y 2015 J. Magn. Magn. Mater. 377 121

    [27]

    Thakur P, Durganandini P 2018 Phys. Rev. B 97 064413

    [28]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [29]

    Liu M W, Chen Y, Song C C, Wu Y, Ding H L 2011 Solid State Commun. 151 503

    [30]

    Song C C, Chen Y, Liu M W 2010 Physica B 405 439

    [31]

    Juhász Junger I, Ihle D, Bogacz L, Janke W 2008 Phys. Rev. B 77 174411

    [32]

    Venkataiah G, Shirahata Y, Itoh M, Taniyama T 2011 Appl. Phys. Lett. 99 102506

    [33]

    Blöte H W J 1975 Physica B+C 79 427

  • [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [2]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046

    [3]

    Wei L, Hu Z, Du G, Yuan Y, Wang J, Tu H, You B, Zhou S, Qu J, Liu H, Zheng R, Hu Y, Du J 2018 Adv. Mater. 30 1801885

    [4]

    Nozaki T, Sahashi M 2018 Jpn. J. Appl. Phys. 57 0902A2

    [5]

    Brivio S, Petti D, Bertacco R, Cezar J C 2011 Appl. Phys. Lett. 98 092505

    [6]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [7]

    Sahoo S, Polisetty S, Duan C G, Jaswal S S, Tsymbal E Y, Binek C 2007 Phys. Rev. B 76 092108

    [8]

    Horley P P, Sukhov A, Jia C, Martinez E, Berakdar J 2012 Phys. Rev. B 85 054401

    [9]

    Chotorlishvili L, Khomeriki R, Sukhov A, Ruffo S, Berakdar J 2013 Phys. Rev. Lett. 111 117202

    [10]

    Rondinelli J M, Stengel M, Spaldin N A 2008 Nat. Nanotechnol. 3 46

    [11]

    Cai T, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z, Shi J, Wang E 2009 Phys. Rev. B 80 140415

    [12]

    Sirker J 2010 Phys. Rev. B 81 014419

    [13]

    Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449

    [14]

    Paglan P A, Nguenang J P, Ruffo S 2018 Europhys. Lett. 122 68001

    [15]

    Sukhov A, Jia C, Horley P P, Berakdar J 2010 J. Phys.: Condens. Matter 22 352201

    [16]

    Odkhuu D, Kioussis N 2018 Phys. Rev. B 97 094404

    [17]

    Wang Z, Grimson M J 2015 J. Appl. Phys. 118 124109

    [18]

    Gao R, Xu Z, Bai L, Zhang Q, Wang Z, Cai W, Chen G, Deng X, Cao X, Luo X, Fu C 2018 Adv. Electron. Mater. 4 1800030

    [19]

    Liu X T, Chen W J, Jiang G L, Wang B, Zheng Y 2016 Phys. Chem. Chem. Phys. 18 2850

    [20]

    Tokunaga Y, Taguchi Y, Arima T, Tokura Y 2012 Nat. Phys. 8 838

    [21]

    Gao X S, Liu J M, Chen X Y, Liu Z G 2000 J. Appl. Phys. 88 4250

    [22]

    Fisher M E 1964 Am. J. Phys. 32 343

    [23]

    Juhász Junger I, Ihle D 2005 Phys. Rev. B 72 064454

    [24]

    Härtel M, Richter J 2011 Phys. Rev. E 83 214412

    [25]

    Gong S J, Jiang Q 2004 Phys. Lett. A 333 124

    [26]

    Zhai L J, Wang H Y 2015 J. Magn. Magn. Mater. 377 121

    [27]

    Thakur P, Durganandini P 2018 Phys. Rev. B 97 064413

    [28]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [29]

    Liu M W, Chen Y, Song C C, Wu Y, Ding H L 2011 Solid State Commun. 151 503

    [30]

    Song C C, Chen Y, Liu M W 2010 Physica B 405 439

    [31]

    Juhász Junger I, Ihle D, Bogacz L, Janke W 2008 Phys. Rev. B 77 174411

    [32]

    Venkataiah G, Shirahata Y, Itoh M, Taniyama T 2011 Appl. Phys. Lett. 99 102506

    [33]

    Blöte H W J 1975 Physica B+C 79 427

  • [1] Shi Hong-Chao, Tang Bing, Liu Chao-Fei. Effect of interlayer exchange coupling interaction on topological phase of a bilayer honeycomb Heisenberg ferromagnet. Acta Physica Sinica, 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [2] Song Kai-Xin, Min Shu-Gang, Gao Jun-Qi, Zhang Shuang-Jie, Mao Zhi-Neng, Shen Ying, Chu Zhao-Qiang. Impedance characteristics of magnetoelectric antennas. Acta Physica Sinica, 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [3] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [4] Lou Guo-Feng, Yu Xin-Jie, Lu Shi-Hua. Equivalent circuit model for plate-type magnetoelectric laminate composite considering an interface coupling factor. Acta Physica Sinica, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [5] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [6] Shen Jian-Xin, Shang Da-Shan, Sun Young. Fundamental circuit element and nonvolatile memory based on magnetoelectric effect. Acta Physica Sinica, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [7] Wu Mei-Xia, Li Man-Rong. Multiferroic properties of exotic double perovskite A2BB' O6. Acta Physica Sinica, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [8] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [9] Fan Hong-Rui, Yuan Ya-Li, Hou Xi-Wen. Thermal geometric discords in a two-qubit Heisenberg XY model. Acta Physica Sinica, 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [10] Li Yong-Chao, Zhou Hang, Pan Dan-Feng, Zhang Hao, Wan Jian-Guo. Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films. Acta Physica Sinica, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [11] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [12] Yuan Chang-Lai, Zhou Xiu-Juan, Xuan Min-Jie, Xu Ji-Wen, Yang Yun, Liu Xin-Yu. Preparation and magnetoelectric characteristics of K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4 composite ceramics. Acta Physica Sinica, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [13] Zhou Wen-Liang, Xia Kun, Xu Da, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. Magnetoelectric properties of quantum paraelectric EuTiO3 materials on the strain effect. Acta Physica Sinica, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [14] Zhou Zong-Li, Zhang Guo-Shun, Lou Ping. The antiferromagnetic Heisenberg model after a suddenly switched-on interaction. Acta Physica Sinica, 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [15] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [16] Deng Heng, Yang Chang-Ping, Huang Chang, Xu Ling-Fang. Magnetically correlated I-V nonlinearity and electrical transport property of the double-layered perovskite La1.8Ca1.2Mn2O7 compound. Acta Physica Sinica, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [17] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [18] Gao Jian-Sen, Zhang Ning. Influence of iron doping level upon magnetoelectric coupling in BaTi1-zFezO3+δ-Tb1-xDyxFe2-y bilayer composites. Acta Physica Sinica, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [19] Wang Huai-Yu, Xia Qing. The total energy of Heisenberg ferromagnetic systems. Acta Physica Sinica, 2007, 56(9): 5466-5470. doi: 10.7498/aps.56.5466
    [20] Yang Ying, Li Qi-Chang, Liu Jun-Ming, Liu Zhi-Guo. Magnetic and dielectric properties of ferroelectromagent Pb(Fe1/2 Nb1/2)O3. Acta Physica Sinica, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
Metrics
  • Abstract views:  6100
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  19 August 2018
  • Accepted Date:  15 October 2018
  • Published Online:  20 December 2019

/

返回文章
返回