-
In this paper, the first-principles method based on density functional theory and non-equilibrium Green's function is used to design and investigate transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation. The zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation is selected as electrodes, and SiC atomic single chain are connected at the above, middle upper, middle lower, and below positions of the electrodes to form four molecular devices: M1, M2, M3 and M4. The study found that the maximum spin current value of the device in the P-magnetic configuration decreases sequentially as the connection position transitions from top to bottom. The spin-down current-voltage curves of M1, M2, and M4 exhibit significant spin rectification effects, with maximum rectification ratios of 9.8×105, 5.2×105, and 6.7×104, respectively. The spin-up current-voltage curve of M3 shows the best rectification effect, with a maximum rectification ratio of 6.9×106. More importantly, the spin-up current-voltage curve of M3 exhibits a unique negative differential resistance effect in the negative voltage range. The spin-up currents of the four devices in the AP magnetic configuration are very weak throughout the bias region and hardly changes with increasing voltage. Although there are differences in the spin-down current of the four devices within the positive and negative bias ranges, they are not significant, thus failing to exhibit excellent rectification effects. In addition, M2 exhibits perfect spin filtering effect in the negative voltage range in both P and AP magnetic configurations, with a spin filtering efficiency close to 100%. This article integrates spin rectification and spin filtering, as well as spin rectification and negative differential resistance, into a single molecular device, achieving the theoretical design of a composite spin device with two functions. The research results provide an important solution for the practical preparation and control of zigzag SiC nanoribbon spin devices in the future.
-
Keywords:
- SiC nanoribbon /
- Spin transport /
- Spin rectification /
- Spin filtering
-
[1] Allen M J, Tung V C, Kaner R B 2010Chem. Rev. 110 132
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666
[3] Ruiz-Puigdollers A, Gamallo P 2017Carbon 114 301
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005Nature 438 197
[5] Son Y W, Cohen M L, Louie S G 2006Phys. Rev. Lett. 97 216803
[6] Barone V, Hod O, Scuseria G E 2006Nano Lett. 6 2748
[7] Li X, Wang X, Zhang L, Lee S, Dai H 2008Science 319 1229
[8] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006Science 312 1191
[9] Lee C, Wei X, Kysar J W, Hone J 2008Science 321 385
[10] Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016Carbon 98 179
[11] Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023Acta Phys. Sin. 72 038502(in Chinese) [邢海英, 张子涵, 吴文静,郭志英,茹金豆2023物理学报72 038502]
[12] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021Phys. Rev. B 104 045412
[13] Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015Nat. Commun. 6 6324
[14] Koga T, Nitta J, Takayanagi H, Datta S 2002Phys. Rev. Lett. 88 126601
[15] Zhang K B, Tan S H, Peng X F, Long M Q 2024Chin. Phys. Lett. 41 097301
[16] Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004Phys. Rev. Lett. 93 117203
[17] Sharma M, Wang S X, Nickel J H 1999Phys. Rev. Lett. 82 616
[18] Guan J, Chen W, Li Y, Yu G, Shi Z, Huang X, Sun C, Chen Z 2013Adv. Funct. Mater. 23 1507
[19] Zhao J, Zeng H, Wang D, Yao G 2020Appl. Sur. Sci. 519 146203
[20] Son Y W, Cohen M L, Louie S G 2006Nature 444 347
[21] Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760
[22] Wu M, Wu X, Zeng X C 2010J. Phys. Chem. C 114 3937
[23] Kan E J, Li Z, Yang J, Hou J 2007Appl. Phys. Lett. 91 243116
[24] Rezapour M R, Yun J, Lee G, Kim K S 2016JPCL 7 5049
[25] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016Science 352 437
[26] Lopez-Urias F, Terrones M, Terrones H 2015Carbon 84 317
[27] Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023Modell. Simul. Mater. Sci. Eng. 32 015008
[28] Lou P, Lee J Y 2009J. Phys. Chem. C 113 12637
[29] Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022Acta Phys. Sin. 71 078501(in Chinese) [李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强2022物理学报71 078501]
[30] Zeng J, Zhou Y H 2020Physica E 118 113861
[31] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010Nat. Nanotechnol. 5 727
[32] Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025Acta Phys. Sin. 74 057101(in Chinese) [李晓波, 刘帅奇, 黄演, 马玉, 丁文策2025物理学报74 057101]
[33] Elasser A, Chow T P 2002Proc. IEEE 90 969
[34] Narushima T, Goto T, Hirai T, Iguchi Y 1997Mater. Trans. JIM 38 821
[35] Shi Z, Zhang Z, Kutana A, Yakobson B I 2015ACS nano 9 9802
[36] Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013J. Mater. Chem. C 1 2131
[37] Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019J. Comput. Electron. 18 407
[38] Chabi S, Kadel K 2020Nanomaterials 10 2226
[39] Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010Phys. Rev. B 81 075433
[40] Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024Physica B 695 416586
[41] Ding Y, Wang Y 2012Appl. Phys. Lett. 101 013102
[42] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020Org. Electron. 84 105808
[43] Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022Physica E 138 115098
[44] Taghizade N, Faizabadi E 2021Mater. Sci. Eng. B 271 115253
[45] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019J. Phys. Condens. Matter 32 015901
[46] Büttiker M, Imry Y, Landauer R, Pinhas S 1985Phys. Rev. B 31 6207
Metrics
- Abstract views: 69
- PDF Downloads: 5
- Cited By: 0