Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation

ZHOU Wen PENG Shuping DENG Shuling WU Dan FAN Zhiqiang ZHANG Xiaojiao

Citation:

Design and transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation

ZHOU Wen, PENG Shuping, DENG Shuling, WU Dan, FAN Zhiqiang, ZHANG Xiaojiao
cstr: 32037.14.aps.74.20250553
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, the first-principles method based on density functional theory and non-equilibrium Green’s function is used to design and investigate the transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation. The zigzag SiC nanoribbons via edge asymmetric dual-hydrogenation are selected as electrodes, and SiC atomic single chains are connected to the above, upper-middle, lower-middle, and below the positions of the electrodes to form four molecular devices: M1, M2, M3 and M4. In this study, it is found that the maximum spin current value of the device in the P-magnetic configuration decreases sequentially with the connection position transitioning from top to bottom. The spin-down current-voltage curves of M1, M2, and M4 exhibit significant spin rectification effects, with maximum rectification ratios of 9.8×105, 5.2×105, and 6.7×104, respectively. The spin-up current-voltage curve of M3 shows the best rectification effect, with a maximum rectification ratio of 6.9×106. More importantly, the spin-up current-voltage curve of M3 exhibits a unique negative differential resistance effect in the negative voltage range. In the AP magnetic configuration, the spin-up currents of the four devices are very weak throughout the bias region and hardly changes with the increase of voltage. Although there are differences in the spin-down current between the four devices within the positive and negative bias ranges, they are not significant, thus failing to demonstrate excellent rectification effects. In addition, M2 exhibits perfect spin filtering effect in the negative voltage range in both P and AP magnetic configurations, with a spin filtering efficiency close to 100%. This work integrates spin rectification and spin filtering, as well as spin rectification and negative differential resistance, into a single molecular device, achieving the theoretical design of a composite spin device with two functions. The research results provide an important solution for practically preparing and controlling zigzag SiC nanoribbon spin devices in the future.
      Corresponding author: FAN Zhiqiang, zqfan@csust.edu.cn ; ZHANG Xiaojiao, xjzhang@hutb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074046) and the Postgraduate Scientific Research and Innovation Program of Hunan Province, China (Grant No. LXBZZ2024222).
    [1]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [5]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [6]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [7]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [8]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [9]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179Google Scholar

    [11]

    邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 物理学报 72 038502Google Scholar

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502Google Scholar

    [12]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [13]

    Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015 Nat. Commun. 6 6324Google Scholar

    [14]

    Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601Google Scholar

    [15]

    Zhang K B, Tan S H, Peng X F, Long M Q 2024 Chin. Phys. Lett. 41 097301Google Scholar

    [16]

    Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004 Phys. Rev. Lett. 93 117203Google Scholar

    [17]

    Sharma M, Wang S X, Nickel J H 1999 Phys. Rev. Lett. 82 616Google Scholar

    [18]

    Guan J, Chen W, Li Y F, Yu G T, Shi Z M, Huang X R, Sun C C, Chen Z F 2013 Adv. Funct. Mater. 23 1507Google Scholar

    [19]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Sur. Sci. 519 146203Google Scholar

    [20]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [21]

    Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760Google Scholar

    [22]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937Google Scholar

    [23]

    Kan E J, Li Z, Yang J, Hou J 2007 Appl. Phys. Lett. 91 243116Google Scholar

    [24]

    Rezapour M R, Yun J, Lee G, Kim K S 2016 JPCL 7 5049

    [25]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [26]

    Lopez-Urias F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023 Modell. Simul. Mater. Sci. Eng. 32 015008

    [28]

    Lou P, Lee J Y 2009 J. Phys. Chem. C 113 12637Google Scholar

    [29]

    李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强 2022 物理学报 71 078501Google Scholar

    Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022 Acta Phys. Sin. 71 078501Google Scholar

    [30]

    Zeng J, Zhou Y H 2020 Physica E 118 113861Google Scholar

    [31]

    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [32]

    李晓波, 刘帅奇, 黄演, 马玉, 丁文策 2025 物理学报 74 057101Google Scholar

    Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025 Acta Phys. Sin. 74 057101Google Scholar

    [33]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [34]

    Narushima T, Goto T, Hirai T, Iguchi Y 1997 Mater. Trans. JIM 38 821Google Scholar

    [35]

    Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802Google Scholar

    [36]

    Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131Google Scholar

    [37]

    Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019 J. Comput. Electron. 18 407Google Scholar

    [38]

    Chabi S, Kadel K 2020 Nanomaterials 10 2226Google Scholar

    [39]

    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433Google Scholar

    [40]

    Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024 Physica B 695 416586Google Scholar

    [41]

    Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar

    [42]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [43]

    Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022 Physica E 138 115098Google Scholar

    [44]

    Taghizade N, Faizabadi E 2021 Mater. Sci. Eng. B 271 115253Google Scholar

    [45]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [46]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • 图 1  锯齿型SiC纳米带(a)下边界Si原子或(b)上边界C原子被双氢原子钝化的结构与自旋能带图; (c) SiC单链连接非对称双氢钝化锯齿型SiC纳米带上方、中上、中下和下方位置的分子器件模型, 阴影区域的L, R分别为器件的左右电极, 箭头分别表示P和AP磁构型的自旋方向

    Figure 1.  Structure and spin band diagram of zigzag SiC nanoribbon with (a) lower boundary Si atoms or (b) upper boundary C atoms passivated by dihydrogen atoms; (c) device model of SiC single chain connected asymmetric dihydrogen passivated zigzag SiC nanoribbon at the upper, middle upper, middle lower and lower positions; L and R in the shaded area are the left and right electrodes of the device, and the arrows indicate the spin direction of P and AP magnetic configurations, respectively.

    图 2  4种分子器件在P磁构型的零偏压自旋输运谱和最大输运峰所处能量位置的输运本征态. Isovalue取固定值为0.2 (a) M1; (b) M2; (c) M3; (d) M4

    Figure 2.  The zero-bias spin-resolved transmission spectra of four types of molecular devices and the transmission eigenstates at the energy position of the maximum transmission peak in P magnetic configuration. Isovalue is fixed on 0.2: (a) M1; (b) M2; (c) M3; (d) M4.

    图 3  4种分子器件在P磁构型的电流-电压曲线 (a) M1; (b) M2; (c) M3; (d) M4

    Figure 3.  Current-voltage characteristics of four types of molecular devices in P-magnetic configuration: (a) M1; (b) M2; (c) M3; (d) M4.

    图 4  P磁构型下在–0. 5—0.5 V偏压范围的输运谱等高线图 (a) M1自旋向下; (b) M2自旋向下; (c) M3自旋向上; (d) M4自旋向下

    Figure 4.  Contour maps of the transmission spectra in the bias voltage range of –0.5 V to 0.5 V for in P magnetic configuration: (a) M1 spin-down; (b) M2 spin-down; (c) M3 spin-up; (d) M4 spin-down.

    图 5  4种器件在AP磁构型的零偏压自旋输运谱和最大输运峰所处能量位置的输运本征态. Isovalue取固定值为0.2 (a) M1; (b) M2; (c) M3; (d) M4

    Figure 5.  The zero-bias spin-resolved transmission spectra of four types of devices and the transmission eigenstates at the energy position of the maximum transmission peak in AP magnetic configuration. Isovalue is fixed on 0.2: (a) M1; (b) M2; (c) M3; (d) M4.

    图 6  4种器件在P磁构型的电流-电压特性 (a) M1; (b) M2; (c) M3; (d) M4

    Figure 6.  Current-voltage characteristics of four types of devices in AP-magnetic configuration: (a) M1; (b) M2; (c) M3; (d) M4.

    图 7  4种器件在P磁构型的整流比

    Figure 7.  Rectification ratios (RR) of four typs of devices in P-magnetic configuration.

  • [1]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [5]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [6]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [7]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [8]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [9]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179Google Scholar

    [11]

    邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 物理学报 72 038502Google Scholar

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502Google Scholar

    [12]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [13]

    Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015 Nat. Commun. 6 6324Google Scholar

    [14]

    Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601Google Scholar

    [15]

    Zhang K B, Tan S H, Peng X F, Long M Q 2024 Chin. Phys. Lett. 41 097301Google Scholar

    [16]

    Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004 Phys. Rev. Lett. 93 117203Google Scholar

    [17]

    Sharma M, Wang S X, Nickel J H 1999 Phys. Rev. Lett. 82 616Google Scholar

    [18]

    Guan J, Chen W, Li Y F, Yu G T, Shi Z M, Huang X R, Sun C C, Chen Z F 2013 Adv. Funct. Mater. 23 1507Google Scholar

    [19]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Sur. Sci. 519 146203Google Scholar

    [20]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [21]

    Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760Google Scholar

    [22]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937Google Scholar

    [23]

    Kan E J, Li Z, Yang J, Hou J 2007 Appl. Phys. Lett. 91 243116Google Scholar

    [24]

    Rezapour M R, Yun J, Lee G, Kim K S 2016 JPCL 7 5049

    [25]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [26]

    Lopez-Urias F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023 Modell. Simul. Mater. Sci. Eng. 32 015008

    [28]

    Lou P, Lee J Y 2009 J. Phys. Chem. C 113 12637Google Scholar

    [29]

    李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强 2022 物理学报 71 078501Google Scholar

    Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022 Acta Phys. Sin. 71 078501Google Scholar

    [30]

    Zeng J, Zhou Y H 2020 Physica E 118 113861Google Scholar

    [31]

    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [32]

    李晓波, 刘帅奇, 黄演, 马玉, 丁文策 2025 物理学报 74 057101Google Scholar

    Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025 Acta Phys. Sin. 74 057101Google Scholar

    [33]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [34]

    Narushima T, Goto T, Hirai T, Iguchi Y 1997 Mater. Trans. JIM 38 821Google Scholar

    [35]

    Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802Google Scholar

    [36]

    Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131Google Scholar

    [37]

    Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019 J. Comput. Electron. 18 407Google Scholar

    [38]

    Chabi S, Kadel K 2020 Nanomaterials 10 2226Google Scholar

    [39]

    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433Google Scholar

    [40]

    Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024 Physica B 695 416586Google Scholar

    [41]

    Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar

    [42]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [43]

    Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022 Physica E 138 115098Google Scholar

    [44]

    Taghizade N, Faizabadi E 2021 Mater. Sci. Eng. B 271 115253Google Scholar

    [45]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [46]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • [1] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] Qin Zhi-Jie, Zhang Hui-Qing, Zhang Guang-Ping, Ren Jun-Feng, Wang Chuan-Kui, Hu Gui-Chao, Qiu Shuai. Theoretical study of introducing spin into nonmagnetic graphene-based single-molecule junction by edge modifications. Acta Physica Sinica, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [4] Tian Ying-Yi, Wang Shuan-Hu, Luo Dian-Bing, Wei Xiang-Yang, Jin Ke-Xin. Spin transport properties of BixY3–xFe5O12 thin films prepared by spin coating. Acta Physica Sinica, 2023, 72(1): 017201. doi: 10.7498/aps.72.20221183
    [5] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [6] Zheng Jun, Ma Li, Xiang Yang, Li Chun-Lei, Yuan Rui-Yang, Chen Jing. Effects of local exchange field in different directions on spin transport of stanene. Acta Physica Sinica, 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [7] Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang. Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Acta Physica Sinica, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [8] Li Chun-Lei, Xu Yan, Zheng Jun, Wang Xiao-Ming, Yuan Rui-Yang, Guo Yong. Light-field assisted spin-polarized transport properties in magnetic-electric barrier structures. Acta Physica Sinica, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [9] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [10] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [11] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [12] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [13] He Ze-Long, Bai Ji-Yuan, Li Peng, Lü Tian-Quan. Electron transport through T-shaped double quantum dot molecule Aharonov-Bohm interferometer. Acta Physica Sinica, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [14] Bai Ji-Yuan, He Ze-Long, Yang Shou-Bin. Charge and spin transport through parallel-coupled double-quantum-dot molecule A-B interferometer. Acta Physica Sinica, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [15] Wang Hui, Hu Gui-Chao, Ren Jun-Feng. Effect of disturbance on spin polarized transport through an organic ferromagnetic device. Acta Physica Sinica, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [16] Hu Chang-Cheng, Wang Gang, Ye Hui-Qi, Liu Bao-Li. Development of the transient spin grating system and its application in the study of spin transport. Acta Physica Sinica, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [17] Jin Lian, Zhu Lin, Li Ling, Xie Zheng-Wei. Electronic transport properties of the multilayer structure double spin-filter tunnel junction. Acta Physica Sinica, 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [18] Wang Ru-Zhi, Yuan Rui-Yang, Song Xue-Mei, Wei Jin-Sheng, Yan Hui. Magnetic-electric controllable spin transport in semiconductors superlattic. Acta Physica Sinica, 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
    [19] Tang Zhen-Kun, Wang Ling-Ling, Tang Li-Ming, You Kai-Ming, Zou Bing-Suo. Spin polarized transport of two-dimensional electron gas through step-magnetic barrier structure. Acta Physica Sinica, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [20] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
Metrics
  • Abstract views:  330
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2025
  • Accepted Date:  29 May 2025
  • Available Online:  13 June 2025
  • Published Online:  20 August 2025
  • /

    返回文章
    返回