Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin transport properties for iron-doped zigzag-graphene nanoribbons interface

Deng Xiao-Qing Sun Lin Li Chun-Xian

Citation:

Spin transport properties for iron-doped zigzag-graphene nanoribbons interface

Deng Xiao-Qing, Sun Lin, Li Chun-Xian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using the first-principles method based on the density-functional theory, the spin transport properties for the systems consisting of iron-doped zigzag-edged graphene nanoribbons (ZGNRs) with iron doping at the interface, where the connection is realized between electrodes and the central scattering region, are investigated theoretically. The ribbon widths of ZGNRs are four zigzag C chains (4 ZGNRs), and the length of scattering region is N unit cells (here, N=4, 6, 8, 10). Results show that -spin current is obviously greater than the -spin current under the ferromagnetic (FM) configuration, which is the spin filtering effect. The reason of spin filtering effect cames from two aspects: a) The symmetry-dependent transport properties which arise from different coupling rules between the up and * subbands around the Fermi level, that are dependent on the wave-function symmetry of the two subbands; b) the distribution of molecular orbit within the bias windows, location, or delocalization. While for antiferromagnetic (AFM) spin state, both and spin currents are very small and both the positive and negative bias regions originate from the existence of band gap; therefore, no obvious spin filtering effect can be obtained. For antiparallel (AP) magnetism configuration, spin filtering effect also can be obtained at high bias. Next, we also investigate the other models: the ribbon width of ZGNRs is five (six) zigzag C chains, namely, 5 ZGNRs (6 ZGNRs), and the scattering region is 6 unit cells length. The currents in 6 ZGNRs are less than that of 5 ZGNRs obviously, and this difference is revealed to arise from different couplings between the conducting subbands around the Fermi level, which is dependent on the symmetry of the systems. However, both of the two models show the similar characteristic: spin filtering effect. The spin current is obviously greater than the -spin current with the whole bias under the ferromagnetic (FM) configuration, The analysis on the electronic structure, transmission spectra, the molecular projected self-consistent Hamiltonian (MPSH) which have been modified by the electrodes, local density (LDOS) and the spin density give an insight into the observed results for the systems. These results indicate that the iron doping at interface between electrodes and central scattering region for ZGNRs can modulate effectively the spin electrons. It is of important significance for developing high spin polarization filtering device based on GNRs.
      Corresponding author: Deng Xiao-Qing, xq_deng@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371065, 61201080), the Hunan Provincial Natural Science Foundation, China (Grant No. 2015JJ3002), the Construct Program of the Key Discipline in Hunan Province, the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Scientific Research Innovation Fund for Postgraduate of Changsha University of Science and Technology.
    [1]

    Zeng J, Chen K 2013 J. Mater. Chem. C 1 4014

    [2]

    Shayeganfar F 2015 J. Phys. Chem. C 119 12681

    [3]

    Duong D L, Lee S Y, Kim S K, Lee Y H 2015 Appl. Phys. Lett. 106 243104

    [4]

    An Y, Wang K, Yang Z, Liu Z, Jia G, Jiao Z, Wang T, Xu G 2015 Org. Electron 17 262

    [5]

    Masum Habib K M, Zahid F, Lake R K 2011 Appl. Phys. Lett. 98 192112

    [6]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H 2014 Carbon 66 646

    [7]

    Soudi A, Aivazian, G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115

    [8]

    An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102

    [9]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Zhu H L, Yang C H 2014 Sci. Rep. 4 4038

    [10]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179

    [11]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657

    [12]

    Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101

    [13]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [14]

    Kan E, Li Z Y, Yang J L, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [15]

    Kang J, Wu F M, Li J B 2011 Appl. Phys. Lett. 98 083109

    [16]

    Dai Q Q, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 4791

    [17]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [18]

    Wang Z, Hu H, Zeng H 2010 Appl. Phys. Lett. 96 243110

    [19]

    Cao C, Chen L N, Long M Q, Huang W R, Xu H 2012 J. Appl. Phys. 111 113708

    [20]

    Impeng S, Khngpracha P, Warakulwit C, Jansang B, Sirijaraensre J, Ehara M, Limtrakul J 2014 RSC Adv. 4 12572

    [21]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 205429

    [22]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107

    [23]

    Deng X Q, Tang G P, Guo C 2012 Phys. Lett. A 376 1839

    [24]

    Zhang G P, Qin Z J 2011 Chem. Phys. Lett. 516 225

    [25]

    Hu S J, Du W, Zhang G P, Gao M, Lu Z Y, Wang X Q 2012 Chin. Phys. Lett. 29 057201

    [26]

    Landauer R 1970 Philos. Mag. 21 863

    [27]

    Bttiker M 1986 Phys. Rev. Lett. 57 1761

    [28]

    Yu Z L, Wang D, Zhu Z, Zhang Z H 2015 Phys. Chem. Chem. Phys. 17 24020

    [29]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H, Sun L 2015 Carbon 94 317

    [30]

    Li Z Y, Qian H Y, Wu J, Gu B L, Duan W H 2008 Phys. Rev. Lett. 100 206802

  • [1]

    Zeng J, Chen K 2013 J. Mater. Chem. C 1 4014

    [2]

    Shayeganfar F 2015 J. Phys. Chem. C 119 12681

    [3]

    Duong D L, Lee S Y, Kim S K, Lee Y H 2015 Appl. Phys. Lett. 106 243104

    [4]

    An Y, Wang K, Yang Z, Liu Z, Jia G, Jiao Z, Wang T, Xu G 2015 Org. Electron 17 262

    [5]

    Masum Habib K M, Zahid F, Lake R K 2011 Appl. Phys. Lett. 98 192112

    [6]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H 2014 Carbon 66 646

    [7]

    Soudi A, Aivazian, G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115

    [8]

    An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102

    [9]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Zhu H L, Yang C H 2014 Sci. Rep. 4 4038

    [10]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179

    [11]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657

    [12]

    Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101

    [13]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [14]

    Kan E, Li Z Y, Yang J L, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [15]

    Kang J, Wu F M, Li J B 2011 Appl. Phys. Lett. 98 083109

    [16]

    Dai Q Q, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 4791

    [17]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [18]

    Wang Z, Hu H, Zeng H 2010 Appl. Phys. Lett. 96 243110

    [19]

    Cao C, Chen L N, Long M Q, Huang W R, Xu H 2012 J. Appl. Phys. 111 113708

    [20]

    Impeng S, Khngpracha P, Warakulwit C, Jansang B, Sirijaraensre J, Ehara M, Limtrakul J 2014 RSC Adv. 4 12572

    [21]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 205429

    [22]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107

    [23]

    Deng X Q, Tang G P, Guo C 2012 Phys. Lett. A 376 1839

    [24]

    Zhang G P, Qin Z J 2011 Chem. Phys. Lett. 516 225

    [25]

    Hu S J, Du W, Zhang G P, Gao M, Lu Z Y, Wang X Q 2012 Chin. Phys. Lett. 29 057201

    [26]

    Landauer R 1970 Philos. Mag. 21 863

    [27]

    Bttiker M 1986 Phys. Rev. Lett. 57 1761

    [28]

    Yu Z L, Wang D, Zhu Z, Zhang Z H 2015 Phys. Chem. Chem. Phys. 17 24020

    [29]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H, Sun L 2015 Carbon 94 317

    [30]

    Li Z Y, Qian H Y, Wu J, Gu B L, Duan W H 2008 Phys. Rev. Lett. 100 206802

  • [1] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [3] Qin Zhi-Jie, Zhang Hui-Qing, Zhang Guang-Ping, Ren Jun-Feng, Wang Chuan-Kui, Hu Gui-Chao, Qiu Shuai. Theoretical study of introducing spin into nonmagnetic graphene-based single-molecule junction by edge modifications. Acta Physica Sinica, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [4] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [5] Zheng Jun, Ma Li, Xiang Yang, Li Chun-Lei, Yuan Rui-Yang, Chen Jing. Effects of local exchange field in different directions on spin transport of stanene. Acta Physica Sinica, 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [6] Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang. Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Acta Physica Sinica, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [7] Yang Wei, Han Jiang-Chao, Cao Yuan, Lin Xiao-Yang, Zhao Wei-Sheng. Efficient spin injection in Fe3GeTe2/h-BN/graphene heterostructure. Acta Physica Sinica, 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [8] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [9] Huang Rui, Li Chun, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Ultrafast spin dynamics in double-magnetic-center endohedral fullerene Y2C2@C82-C2(1). Acta Physica Sinica, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [10] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [11] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [12] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [13] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [14] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [15] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [16] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [17] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [18] Qin Jun-Rui, Chen Shu-Ming, Zhang Chao, Chen Jian-Jun, Liang Bin, Liu Bi-Wei. First-principles study of adsorption effect of A-Z-A graphene nanoribbons field effect transistor. Acta Physica Sinica, 2012, 61(2): 023102. doi: 10.7498/aps.61.023102
    [19] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [20] Hu Chang-Cheng, Wang Gang, Ye Hui-Qi, Liu Bao-Li. Development of the transient spin grating system and its application in the study of spin transport. Acta Physica Sinica, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
Metrics
  • Abstract views:  6368
  • PDF Downloads:  233
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2015
  • Accepted Date:  31 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回