-
The development of modern satellite communication technologies is imposing higher demands on the lifetime and reliability of the microwave vacuum electronic devices, which directly depend on the evaporation properties of the extensively used Monel and stainless steel. Therefore, it is of vital importance to study the evaporation properties of these two types of metallic materials. For the first time, as far as we know, this paper proposes to study the evaporation properties of metallic materials using time-of-flight mass spectrometer (TOFMS). The components and the contents of the vacuum background, the evaporants from the Monel and from the stainless steel have been measured using the TOFMS, respectively. After the pressure of the measurement chamber is below 4.010-8 Pa, the TOFMS is used for the metallic materials working at different temperatures. They are respectively acquired when the Monel and stainless steel are at room temperature on operate between 750 to 900 ℃ under a pressure of 1.010-6 Pa. The measurements are carried out rapidly and in high sensitivity. As disclosed by the measurements, Mn and Cu began to evaporate when the Monel and the stainless steel are heated to 800 ℃, which is still far below the melting points of the two alloys (1243 ℃ and 1080 ℃). When the Monel and the stainless steel are further heated to 900 ℃, the evaporation of Mn, Cu, and Cr becomes quite considerable. Once the evaporated Mn, Cu, or Cr deposit on the ceramics for the insulation in an electron gun, its insulation will be deteriorated. Hence, the Monel and the stainless steel are not suitable to be use as the components in cathode electron guns, especially those used in the devices that are to work a long lifetime in high vacuum. Moreover, the Monel and the stainless steel are not suitable for used as the components that are often under the electron bombardment, e.g., anodes and collectors, either. The SEM images and XRD of the heat treated surface structures of the Monel and the stainless steel in ultrahigh vacuum (1.010-6 Pa) have also been studied. On heating at 900 ℃ for 30 and 120 min the surface structure and composition change remarkably and a significant reduction in Mn and Cr is visible, and also a large number of holes and crystal boundaries emerge on the surfaces of the two metallic alloys. With increasing heating time, the boundaries will grow larger and larger. As a result, the strength of the two metallic materials becomes weaker and gas permeation and leakage even occur. Therefore, it can be concluded that the components made from Monel and stainless steel, especially those with thin walls, should not be heated to high temperatures in ultrahigh vacuum for a long time. The above phenomena are analyzed in detail theoretically and the proper and feasible application methods of the metallic materials are explored in device design and technological process control. These works are expected to contribute to the prolonging of the lifetimes of the satellites, and will lead to tremendous economic benefits.
-
Keywords:
- microwave vacuum electron devices /
- evaporation /
- TOFMS /
- alloy
[1] Liao F J 2006 Acta Electr. Sin. 31 3513 (in Chinese) [廖复疆 2006 电子学报 31 3513]
[2] Zhao P C, Liao C, Feng J 2015 Chin. Phys. B 24 025101
[3] Liu C, Wang Y H 2015 Chin. Phys. B 24 010602
[4] Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505
[5] Chu K R 2004 Rev. Mod. Phys. 76 2489
[6] Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 56302
[7] Liu Y W, Wang X X, Zhu H 2013 Acta Phys. Sin. 62 234402 (in Chinese) [刘燕文, 王小霞, 朱虹 2013 物理学报 62 234402]
[8] Shao W S, Zhang K, Li J, Yan S Q, Chen Q L 2003 Appl. Surf. Sci. 21 554
[9] Liu Y W, Tian H, Han Y 2012 IEEE-Trans. on ED. 59 I36184
[10] Wang J S, Liu W 2008 J. Phys. Chem. Solid 69 2103
[11] Liao F J 1999 Vacuum Electronics (Beijing: Electronics Industry Press) (in Chinese) [廖复疆 1999 真空电子学 (北京: 电子工业出版社)]
[12] Liu Y W, Tian H 2008 Sci. China E 38 1515 (in Chinese) [刘燕文, 田宏 2008 中国科学E 38 1515]
[13] Wang J S, Liu W 2009 IEEE Trans. on ED 56 799
[14] Liu Y W, HanY, Zhao L 2009 Acta. Electr. Sin. 316 1757 (in Chinese) [刘燕文, 韩勇, 赵丽2009 电子学报 316 1757]
[15] Wang X X, Liu Y W 2014 IEEE-Trans. on ED. 61 605
[16] Liu Y W, Wang X X, Tian H 2015 Sci. China Infor. Sci. 45 145 (in Chinese) [刘燕文, 王小霞, 田宏 2015 中国科学 信息科学 45 145]
[17] Liu Y W, Tian H, Han Y 2009 Acta. Phys. Sin. 58 535 (in Chinese) [刘燕文, 田宏, 韩勇 2009 物理学报 58 535]
[18] Li J, Yu Z Q, Shao W S, Zhang K 2005 Appl. Surf. Sci. 25 151
[19] Wang X X, Liao X H, Luo J R 2008 Acta. Phys. Sin. 57 1924 (in Chinese) [王小霞, 廖显恒, 罗积润 2008 物理学报 57 1924]
[20] Li X P, Sun S P, Yu Y, et. al. 2015 Chin. Phys. B 24 120502
[21] Liu Y W, Tian H 2008 Sci. China E 51 1497
[22] Zhang M C, Liu Y W, Yu S J 2014 IEEE-Trans. on ED 61 2983
[23] Liu Y W 2006 Vacuum Sci. Tech. 26 240 (in Chinese) [刘燕文 2006 真空科学与技术学报 26 240]
[24] Electronics Industry Technology Pyrometer (Beijing: Nat. defense Industry press) (in Chinese) [电子工业技术手册(4) 1990 (北京: 国防工业出版社)]
[25] Gren M C, Skinner H B and Tuck H A 1981 Appl. Surf. Sci. 8 13
[26] Guo W X 1984 J Electr. Infor.Tech. 6 166 (in Chinese) [郭文湘 1984 电子科学学刊 6 166]
[27] Gotoh T, Hirasawa S and Kinosita K 1982 Thin Solid Film 87 385
[28] Dudley K 1961 Vacuum 1 154
[29] Verhoeven A T and Vandoveren H 1981 Appl. Surf. Sci. 8 95
[30] Wooren L A, Ruehie A E 1955 J. Appl. Phys. 26 44
[31] Mooke G E 1950 Phys. Rev. 77 246
[32] Leverton W F, Sepherd W G 1952 J. Appl. Phys. 23 787
[33] Zhan M Q, Zhang D P, He H B 2004 Chin. J. Lasers 11 1356 (in Chinese) [占美琼, 张东平,贺洪波 2004 中国激光 11 1356]
[34] Liu Y W, Zhang H L 2004 International Vacuum Electronics Conference 214
[35] Cheng Y J, Li D T, Zhang D X 2010 J. Vac. Sci. Technol. 30 54 (in Chinese) [成永军, 李得天, 张涤新 2010 真空科学与技术学报 30 54]
-
[1] Liao F J 2006 Acta Electr. Sin. 31 3513 (in Chinese) [廖复疆 2006 电子学报 31 3513]
[2] Zhao P C, Liao C, Feng J 2015 Chin. Phys. B 24 025101
[3] Liu C, Wang Y H 2015 Chin. Phys. B 24 010602
[4] Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505
[5] Chu K R 2004 Rev. Mod. Phys. 76 2489
[6] Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 56302
[7] Liu Y W, Wang X X, Zhu H 2013 Acta Phys. Sin. 62 234402 (in Chinese) [刘燕文, 王小霞, 朱虹 2013 物理学报 62 234402]
[8] Shao W S, Zhang K, Li J, Yan S Q, Chen Q L 2003 Appl. Surf. Sci. 21 554
[9] Liu Y W, Tian H, Han Y 2012 IEEE-Trans. on ED. 59 I36184
[10] Wang J S, Liu W 2008 J. Phys. Chem. Solid 69 2103
[11] Liao F J 1999 Vacuum Electronics (Beijing: Electronics Industry Press) (in Chinese) [廖复疆 1999 真空电子学 (北京: 电子工业出版社)]
[12] Liu Y W, Tian H 2008 Sci. China E 38 1515 (in Chinese) [刘燕文, 田宏 2008 中国科学E 38 1515]
[13] Wang J S, Liu W 2009 IEEE Trans. on ED 56 799
[14] Liu Y W, HanY, Zhao L 2009 Acta. Electr. Sin. 316 1757 (in Chinese) [刘燕文, 韩勇, 赵丽2009 电子学报 316 1757]
[15] Wang X X, Liu Y W 2014 IEEE-Trans. on ED. 61 605
[16] Liu Y W, Wang X X, Tian H 2015 Sci. China Infor. Sci. 45 145 (in Chinese) [刘燕文, 王小霞, 田宏 2015 中国科学 信息科学 45 145]
[17] Liu Y W, Tian H, Han Y 2009 Acta. Phys. Sin. 58 535 (in Chinese) [刘燕文, 田宏, 韩勇 2009 物理学报 58 535]
[18] Li J, Yu Z Q, Shao W S, Zhang K 2005 Appl. Surf. Sci. 25 151
[19] Wang X X, Liao X H, Luo J R 2008 Acta. Phys. Sin. 57 1924 (in Chinese) [王小霞, 廖显恒, 罗积润 2008 物理学报 57 1924]
[20] Li X P, Sun S P, Yu Y, et. al. 2015 Chin. Phys. B 24 120502
[21] Liu Y W, Tian H 2008 Sci. China E 51 1497
[22] Zhang M C, Liu Y W, Yu S J 2014 IEEE-Trans. on ED 61 2983
[23] Liu Y W 2006 Vacuum Sci. Tech. 26 240 (in Chinese) [刘燕文 2006 真空科学与技术学报 26 240]
[24] Electronics Industry Technology Pyrometer (Beijing: Nat. defense Industry press) (in Chinese) [电子工业技术手册(4) 1990 (北京: 国防工业出版社)]
[25] Gren M C, Skinner H B and Tuck H A 1981 Appl. Surf. Sci. 8 13
[26] Guo W X 1984 J Electr. Infor.Tech. 6 166 (in Chinese) [郭文湘 1984 电子科学学刊 6 166]
[27] Gotoh T, Hirasawa S and Kinosita K 1982 Thin Solid Film 87 385
[28] Dudley K 1961 Vacuum 1 154
[29] Verhoeven A T and Vandoveren H 1981 Appl. Surf. Sci. 8 95
[30] Wooren L A, Ruehie A E 1955 J. Appl. Phys. 26 44
[31] Mooke G E 1950 Phys. Rev. 77 246
[32] Leverton W F, Sepherd W G 1952 J. Appl. Phys. 23 787
[33] Zhan M Q, Zhang D P, He H B 2004 Chin. J. Lasers 11 1356 (in Chinese) [占美琼, 张东平,贺洪波 2004 中国激光 11 1356]
[34] Liu Y W, Zhang H L 2004 International Vacuum Electronics Conference 214
[35] Cheng Y J, Li D T, Zhang D X 2010 J. Vac. Sci. Technol. 30 54 (in Chinese) [成永军, 李得天, 张涤新 2010 真空科学与技术学报 30 54]
Catalog
Metrics
- Abstract views: 6575
- PDF Downloads: 178
- Cited By: 0