Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes

Chen Wei Chen Run-Feng Li Yong-Tao Yu Zhi-Zhou Xu Ning Bian Bao-An Li Xing-Ao Wang Lian-Hui

Citation:

Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes

Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular spintronics has attracted much attention because of many novel functionalities at the single molecule level over the past decades.Recently,much research has focused on organic molecules containing transition metals in the field of molecular spintronics,which possesses desired spin-dependent transport properties for spintronic device applications. In this paper,based on non-equilibrium Green's function formalism combined with the first-principles density functional theory,the spin-dependent transport properties of an organic Co-Salophen molecule sandwiched between two zigzag graphene nanoribbon (ZGNR) electrodes are investigated.By applying an external magnetic field,the spin directions of the left and right ZGNR electrodes may be switched to two different configurations:the parallel (P) and antiparallel (AP) spin configurations.It is found that for the P spin configuration,the spin-up current is significantly larger than the spin-down one which is nearly zero in a bias range from -1.0 V to 1.0 V,exhibiting a nearly perfect spin filtering effect (up to 100%).Moreover,the spin-up current shows negative differential resistance behavior at 0.3 V.For the AP spin configuration,the spin-down current is much larger than the spin-up one at the positive bias.On the contrary,the spinup current is much larger than the spin-down one at the positive bias.Therefore,the device exhibits bipolar spin filtering effect.It is also found that the spin-up current at the negative bias is much larger than that at the corresponding positive bias,while the spin-down current at the negative bias is much smaller than that at the corresponding positive bias,which shows the outstanding spin rectifying effect.Besides,a significant giant magnetoresistance effect is also obtained in the device when the spin directions of the left and right ZGNR electrodes switch between P and AP spin configurations. The spin transport properties of the device under P and AP spin configurations are attributed to the different orbital symmetries of spin subbands (* and ) of the electrodes and the spatial distribution of molecular orbitals within the bias window.By analyzing the spin-polarization transmission spectrum,the local density of states,the band structures and symmetries of the ZGNR electrodes and the projected self-consistent Hamiltonian states of molecular orbitals,the internal mechanism for multiple functional characteristics of the device is explained in detail.Our results indicate the Co-Salophen molecule can be a promising candidate for future applications in molecular spintronics device,and also provide a theoretical reference for designing the next-generation molecular nano-devices.
      Corresponding author: Li Xing-Ao, lixa@njupt.edu.cn;iamlhwang@njupt.edu.cn ; Wang Lian-Hui, lixa@njupt.edu.cn;iamlhwang@njupt.edu.cn
    • Funds: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1148), the National Natural Science Foundation of China (Grant Nos. 51372119, 11404278), Jiangsu Overseas Research Training Program for University Prominent Young Middle-aged Teachers and Presidents, and by the Natural Science Foundation of NJUPT, China (Grant Nos. NY214130, NY214104).
    [1]

    Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nature Mater. 4 335

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Simpson G J, Hogan S W, Caffio M, Adams C J, Fruchtl H, van Mourik T, Schaub R 2014 Nano Lett. 14 634

    [4]

    Cui A, Dong H, Hu W 2015 Small 11 6115

    [5]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S 2014 Nature Nanotech. 9 830

    [6]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101

    [7]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [8]

    Cui L L, Yang B C, Li X M, Cao C, Long M Q 2014 J. Appl. Phys. 116 033701

    [9]

    Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, Kosbar L L, Graham T O, Curioni A, Andreoni W 2002 Appl. Phys. Lett. 80 2517

    [10]

    Nakabayashi J, Yamamoto D, Kurihara S 2009 Phys. Rev. Lett. 102 066803

    [11]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [12]

    Cui B, Xu Y Q, Ji G M, Wang H, Zhao W K, Zhai Y X, Li D M, Liu D S 2014 Org. Electron. 15 484

    [13]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [14]

    Deng X Q, Zhang Z H, Yang C H, Zhu H, Liang B 2013 Org. Electron. 14 3240

    [15]

    Wu T T, Wang X F, Zhai M X, Liu H, Zhou L, Jiang Y J 2012 Appl. Phys. Lett. 100 052112

    [16]

    Jiang C, Wang X F, Zhai M X 2014 Carbon 68 406

    [17]

    Ren H, Li Q X, Luo Y, Yang J 2009 Appl. Phys. Lett. 94 173110

    [18]

    Ferreira G J, Leuenberger M N, Loss D, Egues J C 2011 Phys. Rev. B 84 125453

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Long M Q, Tang L, Wang D, Wang L, Shuai Z 2009 J. Am. Chem. Soc. 131 17728

    [21]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [22]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [23]

    Kim W Y, Kim K S 2008 Nature Nanotech. 3 408

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [27]

    Wang Z F, Li Q X, Shi Q W, Wang X, Yang J, Hou J G, Chen J 2008 Appl. Phys. Lett. 92 133114

    [28]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H 2014 Carbon 66 646

    [29]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [30]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X 2016 Org. Electron. 35 1

    [31]

    Chen T, Wang L L, Li X F, Luo K W, Xu L, Li Q, Zhang X H, Long M Q 2014 RSC Adv. 4 60376

    [32]

    Tan C M, Zhou Y H, Chen C Y, Yu J F, Chen K Q 2016 Org. Electron. 28 244

    [33]

    Wu Q H, Zhao P, Liu D S 2016 RSC Adv. 6 16634

    [34]

    Zhu L, Zou F, Gao J H, Fu Y S, Gao G Y, Fu H H, Wu M H, L J T, Yao K L 2015 Nanotechnology 26 315201

    [35]

    An Y P, Yang Z Q 2012 J. Appl. Phys. 111 043713

    [36]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

    [37]

    Zhao P, Liu D, Chen G 2016 Org. Electron. 36 160

    [38]

    Niu P B, Shi Y L, Sun Z 2015 Chin. Phys. Lett. 32 117201

    [39]

    Bella D S, Fragala I, Ledoux I, Diaz-Garcia M A, Marks T J 1995 J. Am. Chem. Soc. 117 9481

    [40]

    Ortiz B, Park S M 2000 Bull. Korean Chem. Soc. 21 4405

    [41]

    DiLullo A, Chang S H, Baadji N, Clark K, Klckner J P, Prosenc M H, Sanvito S, Wiesendanger R, Hoffmann G, Hla S W 2012 Nano Lett. 12 3174

    [42]

    Bazarnik M, Bugenhagen B, Elsebach M, Sierda E, Frank A, Prosenc M H, Wiesendanger R 2016 Nano Lett. 16 577

    [43]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K J 1996 Phys. Soc. Jpn. 5 1920

    [44]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [45]

    Zeng M G, Shen L, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [46]

    Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802

    [47]

    Wang Z F, Li Q X, Shi Q W, Wang X P 2008 Appl. Phys. Lett. 92 133114

    [48]

    Stokbro K, Taylor J, Brandbyge M, Mozos J L, Ordejon P 2003 Comput. Mater. Sci. 27 151

    [49]

    Brown E R, Sderstrm J R, Parker C D, Mahoney L J, Molvar K M, McGill T C 1991 Appl. Phys. Lett. 58 2291

    [50]

    Broekaert T P E, Brar B, van der Wagt J P A, Seabaugh A C, Morris F J, Moise T S, Beam E A, Frazier G A 1998 IEEE J. Solid-St. Circ. 33 1342

    [51]

    Mathews R H, Sage J P, Sollner T G, Calawa S D, Chen C L, Mahoney L J, Maki P A, Molvar K M 1999 Proc. IEEE 87 596

  • [1]

    Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nature Mater. 4 335

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Simpson G J, Hogan S W, Caffio M, Adams C J, Fruchtl H, van Mourik T, Schaub R 2014 Nano Lett. 14 634

    [4]

    Cui A, Dong H, Hu W 2015 Small 11 6115

    [5]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S 2014 Nature Nanotech. 9 830

    [6]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101

    [7]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [8]

    Cui L L, Yang B C, Li X M, Cao C, Long M Q 2014 J. Appl. Phys. 116 033701

    [9]

    Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, Kosbar L L, Graham T O, Curioni A, Andreoni W 2002 Appl. Phys. Lett. 80 2517

    [10]

    Nakabayashi J, Yamamoto D, Kurihara S 2009 Phys. Rev. Lett. 102 066803

    [11]

    Staykov A, Watanabe M, Ishihara T, Yoshizawa K 2014 J. Phys. Chem. C 118 27539

    [12]

    Cui B, Xu Y Q, Ji G M, Wang H, Zhao W K, Zhai Y X, Li D M, Liu D S 2014 Org. Electron. 15 484

    [13]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [14]

    Deng X Q, Zhang Z H, Yang C H, Zhu H, Liang B 2013 Org. Electron. 14 3240

    [15]

    Wu T T, Wang X F, Zhai M X, Liu H, Zhou L, Jiang Y J 2012 Appl. Phys. Lett. 100 052112

    [16]

    Jiang C, Wang X F, Zhai M X 2014 Carbon 68 406

    [17]

    Ren H, Li Q X, Luo Y, Yang J 2009 Appl. Phys. Lett. 94 173110

    [18]

    Ferreira G J, Leuenberger M N, Loss D, Egues J C 2011 Phys. Rev. B 84 125453

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Long M Q, Tang L, Wang D, Wang L, Shuai Z 2009 J. Am. Chem. Soc. 131 17728

    [21]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [22]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [23]

    Kim W Y, Kim K S 2008 Nature Nanotech. 3 408

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [27]

    Wang Z F, Li Q X, Shi Q W, Wang X, Yang J, Hou J G, Chen J 2008 Appl. Phys. Lett. 92 133114

    [28]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Yang C H 2014 Carbon 66 646

    [29]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [30]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X 2016 Org. Electron. 35 1

    [31]

    Chen T, Wang L L, Li X F, Luo K W, Xu L, Li Q, Zhang X H, Long M Q 2014 RSC Adv. 4 60376

    [32]

    Tan C M, Zhou Y H, Chen C Y, Yu J F, Chen K Q 2016 Org. Electron. 28 244

    [33]

    Wu Q H, Zhao P, Liu D S 2016 RSC Adv. 6 16634

    [34]

    Zhu L, Zou F, Gao J H, Fu Y S, Gao G Y, Fu H H, Wu M H, L J T, Yao K L 2015 Nanotechnology 26 315201

    [35]

    An Y P, Yang Z Q 2012 J. Appl. Phys. 111 043713

    [36]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

    [37]

    Zhao P, Liu D, Chen G 2016 Org. Electron. 36 160

    [38]

    Niu P B, Shi Y L, Sun Z 2015 Chin. Phys. Lett. 32 117201

    [39]

    Bella D S, Fragala I, Ledoux I, Diaz-Garcia M A, Marks T J 1995 J. Am. Chem. Soc. 117 9481

    [40]

    Ortiz B, Park S M 2000 Bull. Korean Chem. Soc. 21 4405

    [41]

    DiLullo A, Chang S H, Baadji N, Clark K, Klckner J P, Prosenc M H, Sanvito S, Wiesendanger R, Hoffmann G, Hla S W 2012 Nano Lett. 12 3174

    [42]

    Bazarnik M, Bugenhagen B, Elsebach M, Sierda E, Frank A, Prosenc M H, Wiesendanger R 2016 Nano Lett. 16 577

    [43]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K J 1996 Phys. Soc. Jpn. 5 1920

    [44]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [45]

    Zeng M G, Shen L, Zhang C, Feng Y P 2011 Appl. Phys. Lett. 98 053101

    [46]

    Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802

    [47]

    Wang Z F, Li Q X, Shi Q W, Wang X P 2008 Appl. Phys. Lett. 92 133114

    [48]

    Stokbro K, Taylor J, Brandbyge M, Mozos J L, Ordejon P 2003 Comput. Mater. Sci. 27 151

    [49]

    Brown E R, Sderstrm J R, Parker C D, Mahoney L J, Molvar K M, McGill T C 1991 Appl. Phys. Lett. 58 2291

    [50]

    Broekaert T P E, Brar B, van der Wagt J P A, Seabaugh A C, Morris F J, Moise T S, Beam E A, Frazier G A 1998 IEEE J. Solid-St. Circ. 33 1342

    [51]

    Mathews R H, Sage J P, Sollner T G, Calawa S D, Chen C L, Mahoney L J, Maki P A, Molvar K M 1999 Proc. IEEE 87 596

  • [1] Yan Yan, Sun Feng, Yang Zhi, Kong Cheng-Yu, Ge Yun-Long, Chen Deng-Hui, Qiu Shuai, Li Zong-Liang. Mechanical modulation effects of gold electrodes on geometries and electronic transport properties of azobenzene molecular junctions. Acta Physica Sinica, 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [3] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [5] Qin Zhi-Jie, Zhang Hui-Qing, Zhang Guang-Ping, Ren Jun-Feng, Wang Chuan-Kui, Hu Gui-Chao, Qiu Shuai. Theoretical study of introducing spin into nonmagnetic graphene-based single-molecule junction by edge modifications. Acta Physica Sinica, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [6] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [7] Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang. Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Acta Physica Sinica, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [8] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [9] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [10] Zuo Min, Liao Wen-Hu, Wu Dan, Lin Li-E. Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes. Acta Physica Sinica, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [11] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [12] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [13] Chen Ying, Hu Hui-Fang, Wang Xiao-Wei, Zhang Zhao-Jin, Cheng Cai-Ping. Rectifying behaviors induced by B/N-doping in similar right triangle graphene devices. Acta Physica Sinica, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [14] Bai Ji-Yuan, He Ze-Long, Yang Shou-Bin. Charge and spin transport through parallel-coupled double-quantum-dot molecule A-B interferometer. Acta Physica Sinica, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [15] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [16] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [17] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [18] Ma Li, Tan Zhen-Bing, Tan Chang-Ling, Liu Guang-Tong, Yang Chang-Li, Lü Li. Fabrication of graphene nanoribbons through mechanical cleavage and their electronic transport properties at low temperature. Acta Physica Sinica, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [19] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [20] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
Metrics
  • Abstract views:  6514
  • PDF Downloads:  281
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2017
  • Accepted Date:  06 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回