Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution

Peng Shu-Ping Deng Shu-Ling Liu Qian Dong Cheng-Qi Fan Zhi-Qiang

Citation:

Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution

Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang
cstr: 32037.14.aps.73.20240174
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, the first-principles method based on density functional theory and non-equilibrium Green’s function is used to investigate the modulation of quantum interference and spin transport in N and B atom substituted meta-phenylene (M-OPE) molecular devices. The zero bias spin transmission spectrum of M-OPE molecular device shows that highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are located at higher energy positions on both sides of the Fermi level, and there is a clear transmission spectrum valley (anti resonance peak) on the right side of the Fermi level. This indicates that M-OPE molecules are typical destructive quantum interference molecular systems. Research has found that N and B atoms replace carbon atoms at positions 1, 2, and 3 on the central ring of the molecule, which suppress the original destructive quantum interference of M-OPE molecular device to different extents. The substitution of N and B atoms at position 1 has no effect on the original destructive quantum interference of M-OPE molecular device, while the substitution of N and B atoms at positions 2 and 3 significantly suppresses the original destructive quantum interference of M-OPE molecular device. Therefore, there is a significant difference in the electrical conductivity of devices with N and B atoms at different positions, with the order of electrical conductivity values being N2 > N3 > N1 and B2 > B3 > B1. In this study, it is also found that the spin current value of device with B atom substitution is significantly higher than that of device with N atom substitution. After the substitution of B atom at position 2, the spin current value of the device under negative bias is significantly greater than that under positive bias, exhibiting a significant spin rectification effect. Based on the extended curled arrow rule proposed by O’Driscoll et al. to predict the behavior of quantum interference effects, we explain the physical mechanism by which N and B protons at different positions have different effects on the suppression of quantum interference in M-OPE molecular device. The results of the quantum interference and spin transport regulation of molecular systems by the substitution of B and N atoms can provide theoretical guidance for realizing the further application of heterocyclic aromatic hydrocarbons in molecular electronics.
      Corresponding author: Fan Zhi-Qiang, zqfan@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074046) and the Hunan Provincial Postgraduate Scientific Research and Innovation Project, China (Grant No. CXCLY2022141).
    [1]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 物理学报 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [2]

    Haidar E A, Tawfik S A, Stampfl C, Hirao K, Yoshizawa K, Nakajima T, Nakajima T, Soliman K A, El-Nahas A M 2021 Adv. Theor. Simul. 4 2000203Google Scholar

    [3]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [4]

    Li Y, Zhou Y, Li Y, Hong W, Li H 2022 J. Phys. Chem. C 126 6420Google Scholar

    [5]

    李瑞豪, 刘俊扬, 洪文晶 2022 物理学报 71 067303Google Scholar

    Li R H, Liu J Y, Hong W J 2022 Acta Phys. Sin. 71 067303Google Scholar

    [6]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [7]

    Fan Z, Chen K 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [8]

    Hirai M, Tanaka N, Sakai M, Yamaguchi S 2019 Chem. Rev. 119 8291Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Tsuji Y, Okazawa K, Kurino K, Yoshizawa K 2022 J. Phys. Chem. C 126 3244Google Scholar

    [11]

    Shubin N, Emelianov A, Uspenskii Y, Gorbatsevich A 2021 Phys. Chem. Chem. Phys. 23 20854Google Scholar

    [12]

    Ding Z K, Zeng Y J, Pan H, Luo N N, Zeng J, Tang L M, Chen K Q 2022 Phys. Rev. B 106 L121401Google Scholar

    [13]

    Pedersen K G L, Strange M, Leijnse M, Hedegård P, Solomon G C, Paaske J 2014 Phys. Rev. B 90 125413Google Scholar

    [14]

    Polakovsky A, Showman J, Valdiviezo J, Palma J L 2021 Phys. Chem. Chem. Phys. 23 1550Google Scholar

    [15]

    Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M, Chen K Q 2023 Phys. Rev. B 107 104303Google Scholar

    [16]

    Qu F Y, Zhao Z H, Ren X R, Zhang S F, Wang L, Wang D 2022 Phys. Chem. Chem. Phys. 24 26795Google Scholar

    [17]

    Baer R, Neuhauser D 2002 J. Am. Chem. Soc. 124 4200Google Scholar

    [18]

    He R, Wang D, Luo N, Zeng J, Chen K Q, Tang L M 2023 Phys. Rev. Lett. 130 046401Google Scholar

    [19]

    彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501Google Scholar

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501Google Scholar

    [20]

    Zhang W, Zhao Z B, Tan M, Adijiang A, Zhong S, Xu X, Zhao T, Ramya E, Sun L, Zhao X, Fan Z, Xiang D 2023 Chem. Sci. 14 11456Google Scholar

    [21]

    Zhang X J, Long M Q, Chen K Q, Shuai Z, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 073503Google Scholar

    [22]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D 2018 J. Phys. Chem. C 122 14965Google Scholar

    [23]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508Google Scholar

    [24]

    Wang Y H, Huang H, Yu Z, Zheng J F, Shao Y, Zhou X S, Chen J Z, Li J F 2020 J. Mater. Chem. C 8 6826Google Scholar

    [25]

    Wang X Y, Yao X, Narita A, Müllen K 2019 Acc. Chem. Res. 52 2491Google Scholar

    [26]

    Liu X S, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W J, Lambert C J, Liu S X 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [27]

    Chen Z Z, Wu S D, Lin J L, Chen L C, Cao J J, Shao X, Lambert C J, Zhang H L 2023 Adv. Electron. Mater. 9 2201024Google Scholar

    [28]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H 2015 Nat. Commun. 6 6389Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [31]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M, Guo C 2012 Appl. Phys. Lett. 100 063107Google Scholar

    [32]

    O’Driscoll L J, Bryce M R 2021 Nanoscale 13 1103Google Scholar

    [33]

    O’Driscoll L J, Sangtarash S, Xu W, Daaoub A, Hong W J, Sadeghi H, Bryce M R 2021 J. Phys. Chem. C 125 17385Google Scholar

    [34]

    Markussen T, Stadler R, Thygesen K S 2010 Nano Lett. 10 4260Google Scholar

    [35]

    von Grotthuss E, John A, Kaese T, Wagner M 2018 Asian J. Org. Chem. 7 37Google Scholar

  • 图 1  N或B原子取代后M-OPE分子结示意图

    Figure 1.  Schematic diagram of M-OPE molecular junction after N or B atom substitution.

    图 2  零偏压下(a) M-OPE和(b) N1的自旋透射谱. 红线和蓝线分别代表自旋向上和自旋向下

    Figure 2.  Spin transmission spectra of (a) M-OPE and (b) N1 under zero bias. Red and blue lines represent spin up and spin down, respectively.

    图 3  (a) 零偏压下N2的自旋透射谱; (b) HOMO-up和HOMO-down位置的透射本征态. Isovalue的取值固定为0.35

    Figure 3.  (a) Spin transmission spectrum of N2 under zero bias; (b) transmission eigenstates of HOMO-up and HOMO-down. The isovalue is fixed at 0.35.

    图 4  (a) 零偏压下N3的自旋透射谱; (b) LUMO-up和LUMO-down位置的透射本征态. Isovalue的取值固定为0.35

    Figure 4.  (a) Spin transmission spectrum of N3 under zero bias; (b) transmission eigenstates of LUMO-up and LUMO-down. The isovalue is fixed at 0.35.

    图 5  零偏压下(a) B1和(b) B3的自旋透射谱

    Figure 5.  Spin transmission spectra of (a) B1 and (b) B3 under zero bias.

    图 6  (a) 零偏压下B2的自旋透射谱; (b) LUMO-up和LUMO-down位置的透射本征态. Isovalue的取值固定为0.35

    Figure 6.  (a) Spin transmission spectrum of B2 under zero bias; (b) transmission eigenstates of LUMO-up and LUMO-down. The isovalue is fixed at 0.35.

    图 7  器件的自旋电流-电压特性 (a) N1; (b) N2; (c) N3; (d) B1; (e) B2; (f) B3

    Figure 7.  Spin-resolved current-voltage characteristics of devices: (a) N1; (b) N2; (c) N3; (d) B1; (e) B2; (f) B3.

    图 8  B原子在1, 2, 3位置取代的量子干涉效应行为预测

    Figure 8.  Prediction of quantum interference behavior of B atom substitution at positions 1, 2, and 3.

  • [1]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 物理学报 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [2]

    Haidar E A, Tawfik S A, Stampfl C, Hirao K, Yoshizawa K, Nakajima T, Nakajima T, Soliman K A, El-Nahas A M 2021 Adv. Theor. Simul. 4 2000203Google Scholar

    [3]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [4]

    Li Y, Zhou Y, Li Y, Hong W, Li H 2022 J. Phys. Chem. C 126 6420Google Scholar

    [5]

    李瑞豪, 刘俊扬, 洪文晶 2022 物理学报 71 067303Google Scholar

    Li R H, Liu J Y, Hong W J 2022 Acta Phys. Sin. 71 067303Google Scholar

    [6]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [7]

    Fan Z, Chen K 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [8]

    Hirai M, Tanaka N, Sakai M, Yamaguchi S 2019 Chem. Rev. 119 8291Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Tsuji Y, Okazawa K, Kurino K, Yoshizawa K 2022 J. Phys. Chem. C 126 3244Google Scholar

    [11]

    Shubin N, Emelianov A, Uspenskii Y, Gorbatsevich A 2021 Phys. Chem. Chem. Phys. 23 20854Google Scholar

    [12]

    Ding Z K, Zeng Y J, Pan H, Luo N N, Zeng J, Tang L M, Chen K Q 2022 Phys. Rev. B 106 L121401Google Scholar

    [13]

    Pedersen K G L, Strange M, Leijnse M, Hedegård P, Solomon G C, Paaske J 2014 Phys. Rev. B 90 125413Google Scholar

    [14]

    Polakovsky A, Showman J, Valdiviezo J, Palma J L 2021 Phys. Chem. Chem. Phys. 23 1550Google Scholar

    [15]

    Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M, Chen K Q 2023 Phys. Rev. B 107 104303Google Scholar

    [16]

    Qu F Y, Zhao Z H, Ren X R, Zhang S F, Wang L, Wang D 2022 Phys. Chem. Chem. Phys. 24 26795Google Scholar

    [17]

    Baer R, Neuhauser D 2002 J. Am. Chem. Soc. 124 4200Google Scholar

    [18]

    He R, Wang D, Luo N, Zeng J, Chen K Q, Tang L M 2023 Phys. Rev. Lett. 130 046401Google Scholar

    [19]

    彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501Google Scholar

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501Google Scholar

    [20]

    Zhang W, Zhao Z B, Tan M, Adijiang A, Zhong S, Xu X, Zhao T, Ramya E, Sun L, Zhao X, Fan Z, Xiang D 2023 Chem. Sci. 14 11456Google Scholar

    [21]

    Zhang X J, Long M Q, Chen K Q, Shuai Z, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 073503Google Scholar

    [22]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D 2018 J. Phys. Chem. C 122 14965Google Scholar

    [23]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508Google Scholar

    [24]

    Wang Y H, Huang H, Yu Z, Zheng J F, Shao Y, Zhou X S, Chen J Z, Li J F 2020 J. Mater. Chem. C 8 6826Google Scholar

    [25]

    Wang X Y, Yao X, Narita A, Müllen K 2019 Acc. Chem. Res. 52 2491Google Scholar

    [26]

    Liu X S, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W J, Lambert C J, Liu S X 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [27]

    Chen Z Z, Wu S D, Lin J L, Chen L C, Cao J J, Shao X, Lambert C J, Zhang H L 2023 Adv. Electron. Mater. 9 2201024Google Scholar

    [28]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H 2015 Nat. Commun. 6 6389Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [31]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M, Guo C 2012 Appl. Phys. Lett. 100 063107Google Scholar

    [32]

    O’Driscoll L J, Bryce M R 2021 Nanoscale 13 1103Google Scholar

    [33]

    O’Driscoll L J, Sangtarash S, Xu W, Daaoub A, Hong W J, Sadeghi H, Bryce M R 2021 J. Phys. Chem. C 125 17385Google Scholar

    [34]

    Markussen T, Stadler R, Thygesen K S 2010 Nano Lett. 10 4260Google Scholar

    [35]

    von Grotthuss E, John A, Kaese T, Wagner M 2018 Asian J. Org. Chem. 7 37Google Scholar

Metrics
  • Abstract views:  4042
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2024
  • Accepted Date:  12 March 2024
  • Available Online:  03 April 2024
  • Published Online:  20 May 2024
  • /

    返回文章
    返回