Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study

Dai Guang-Zhen Jiang Xian-Wei Xu Tai-Long Liu Qi Chen Jun-Ning Dai Yue-Hua

Citation:

Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study

Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • HfO2, as a gate dielectric material for the charge trapping memory, has been studied extensively due to its merits such as high k value, good thermal stability, and conduction band offset relative to Si, etc.. In order to understand the reason why the charge trapping efficiency is improved by high k capture layer with respect to charge trapping type memory, the variation of HfO2 crystal texture induced by oxygen vacancy and the influences of it are investigated using the first principle calculation based on density functional theory. Results show that the distance of the nearest neighbor oxygen atom from oxygen vacancy is markedly reduced after optimization, whereas the decrease of distances between the next nearest neighbor oxygen atom from oxygen vacancy and hafnium is less. The change of local crystal lattice is caused by optimized oxygen vacancy for it significantly changes the local lattice, but rarely influences the far lattice. Deep energy level and density of electron states in conduction band are contributed by Hf atoms, while the density of electron states in valence band is contributed by O atoms. The local density of electron states in each element and the total density of electron states in the optimization system are all larger than those in the system without optimization, and the sum of the local densities of electron states is less than the total density of electron states. The trapped charges are moving mainly around the oxygen vacancy and the adjacent atoms of oxygen in the optimization system, but the charges are without optimization throughout the system. The local energy of charge is increased in optimized defect system, while the local energy of charge is conspicuously reduced in the system without optimization, i.e. lattice variation without saturation characteristic has a large effect on the local energy of charge. Results further prove that the change of crystal lattice induced by oxygen vacancy has strong ability to capture charge, which helps improve the features of memory.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
    [1]

    Kim, Kinam 2005 IEEE International Electron Devices Meeting Washington, DC, American, Dec 5-5 2005 p323

    [2]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [3]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [4]

    Chen X, Zhu Z L, Liu M 2010 Appl. Phys. Lett. 97 225513

    [5]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interfaces 3 3691

    [6]

    Liu J, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 Symposium on VLSI Technology Hawaii, American, June 13-15 2006 p54

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    You H C, Hsu T H, Ko F H, Huang J W, Lei T F 2006 IEEE Electron device letters 27 653

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin K J, Lai Y L, Lai H L 2007 Electron Device and Solid-State Circuits (EDSSC 2007), Taian, Tainan, China, Dec 20-22 2007 p629

    [13]

    Joo M S, Cho B J, Yeo C C, Chan D S H, Whoang S J, Mathew S 2003 IEEE Trans. Electron Devices 50 2088

    [14]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco, CA, American Dec 11-13 2006 p1

    [15]

    Tan Y N, Chim W J, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [16]

    Robertson J, Xiong K, Clark S J 2006 Thin Solid Films 496 1

    [17]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [18]

    Umezawa N, Sato M, Shiraishi K 2008 Appl. Phys. Lett. 93 223104

    [19]

    Ramo D M, Shluger A L, Gabartin J L and Bersuker G 2007 Phys. Rev. Lett. 99 155504

    [20]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego, CA, American Sept 9-11 2009 p155

    [21]

    Zhang W, Hou Z F 2013 Phys. Status Solidi B 250 352

    [22]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [23]

    Garcia J C, Scolfaro L M R, Leite J R, Lino A T, Freire V N, Farias G A, Da Silva Jr E F 2004 Appl. Phys. Lett. 85 5022

    [24]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, da Silva Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30 2005 p189

    [25]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [26]

    Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N, Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese) [代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦 2014 物理学报 63 123101]

    [27]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [31]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [32]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S W 2008 Phys. Rev. B 78 012102

    [33]

    Balog M, Schieber M, Michiman M, Patai S 1977 Thin Solid Films 41 247

    [34]

    Chen G H, Hou Z F, Gong X G 2008 Comp. Mater. Sci. 44 46

  • [1]

    Kim, Kinam 2005 IEEE International Electron Devices Meeting Washington, DC, American, Dec 5-5 2005 p323

    [2]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [3]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [4]

    Chen X, Zhu Z L, Liu M 2010 Appl. Phys. Lett. 97 225513

    [5]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interfaces 3 3691

    [6]

    Liu J, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 Symposium on VLSI Technology Hawaii, American, June 13-15 2006 p54

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    You H C, Hsu T H, Ko F H, Huang J W, Lei T F 2006 IEEE Electron device letters 27 653

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin K J, Lai Y L, Lai H L 2007 Electron Device and Solid-State Circuits (EDSSC 2007), Taian, Tainan, China, Dec 20-22 2007 p629

    [13]

    Joo M S, Cho B J, Yeo C C, Chan D S H, Whoang S J, Mathew S 2003 IEEE Trans. Electron Devices 50 2088

    [14]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco, CA, American Dec 11-13 2006 p1

    [15]

    Tan Y N, Chim W J, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [16]

    Robertson J, Xiong K, Clark S J 2006 Thin Solid Films 496 1

    [17]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [18]

    Umezawa N, Sato M, Shiraishi K 2008 Appl. Phys. Lett. 93 223104

    [19]

    Ramo D M, Shluger A L, Gabartin J L and Bersuker G 2007 Phys. Rev. Lett. 99 155504

    [20]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego, CA, American Sept 9-11 2009 p155

    [21]

    Zhang W, Hou Z F 2013 Phys. Status Solidi B 250 352

    [22]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [23]

    Garcia J C, Scolfaro L M R, Leite J R, Lino A T, Freire V N, Farias G A, Da Silva Jr E F 2004 Appl. Phys. Lett. 85 5022

    [24]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, da Silva Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30 2005 p189

    [25]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [26]

    Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N, Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese) [代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦 2014 物理学报 63 123101]

    [27]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [31]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [32]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S W 2008 Phys. Rev. B 78 012102

    [33]

    Balog M, Schieber M, Michiman M, Patai S 1977 Thin Solid Films 41 247

    [34]

    Chen G H, Hou Z F, Gong X G 2008 Comp. Mater. Sci. 44 46

  • [1] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [2] Wang Kun, Qiao Ying-Jie, Zhang Xiao-Hong, Wang Xiao-Dong, Zheng Ting, Bai Cheng-Ying, Zhang Yi-Ming, Du Shi-Yu. First-principles study of effect of ideal tensile/shear strain on chemical bond length and charge density distribution of U3Si2. Acta Physica Sinica, 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [3] Liang Fei, Lin Zhe-Shuai, Wu Yi-Cheng. First principle study of nonlinear optical crystals. Acta Physica Sinica, 2018, 67(11): 114203. doi: 10.7498/aps.67.20180189
    [4] Zhao Run, Yang Hao. Oxygen vacancies induced tuning effect on physical properties of multiferroic perovskite oxide thin films. Acta Physica Sinica, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [5] He Jin-Yun, Peng Dai-Jiang, Wang Yan-Wu, Long Fei, Zou Zheng-Guang. First principle calculation and photocatalytic performance of BixWO6 (1.81 ≤ x ≤ 2.01) with oxygen vacancies. Acta Physica Sinica, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [6] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [7] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [8] Jiang Xian-Wei, Dai Guang-Zhen, Lu Shi-Bin, Wang Jia-Yu, Dai Yue-Hua, Chen Jun-Ning. Effect of Al doping on the reliability of HfO2 as a trapping layer: First-principles study. Acta Physica Sinica, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [9] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [10] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [11] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [12] Hu Xiao-Ying, Tian Hong-Wei, Song Li-Jun, Zhu Pin-Wen, Qiao Liang. First-prinicples study of Li-N and Li-2N codoped p-type ZnO. Acta Physica Sinica, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [13] Dou Jun-Qing, Kang Xue-Ya, Tuerdi Wumair, Hua Ning, Han Ying. The first principles and experimental study on Mn-doped LiFePO4. Acta Physica Sinica, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [14] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [15] Ma Guo-Jia, Zhu Jia-Qi, Gong Shui-Li, Gao Wei. First principles studies of nitrogen doped tetrahedral amorphous carbon. Acta Physica Sinica, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [16] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [17] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [18] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [19] Yang Chong, Yang Chun. First-principles study of atomic and electronic structures of the silicon oxide clusters on Si(001) surfaces. Acta Physica Sinica, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [20] Dang Hong-Li, Wang Chong-Yu, Yu Tao. First-principles investigation on alloying effect of Nb and Mo in γ-TiAl. Acta Physica Sinica, 2007, 56(5): 2838-2844. doi: 10.7498/aps.56.2838
Metrics
  • Abstract views:  8075
  • PDF Downloads:  1018
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2014
  • Accepted Date:  19 September 2014
  • Published Online:  05 February 2015

/

返回文章
返回