-
In this paper, the influence of charge trapping memory storage feature is studied by doping the substitutional impurity Al and introducing oxygen vacancy within HfO2. HfO2 is widely used in trapping layer of charge trapping memory, for it belongs to high dielectric constant materials with the abilities to shrink the device size and improve the device performance. Materials studio and Vienna Ab-initio Simulation Package are used to investigate the influence of doping Al on the formation of the oxygen vacancy in HfO2 as a trapping layer. At the same time, the interaction energy of two defects at different distances is calculated. Results show that doping the substitutional impurity Al reduces the formation energy of oxygen vacancies in HfO2, and the reduced formation energy of the three-fold-coordinated O vacancy is larger than that of the four-fold-coordinated O vacancy. After having studied three different defect distances between the substitutional impurity Al and the three-fold-coordinated O vacancy, the results indicate that the system acquires the largest charge trapping energy, the most of quantum states, the smallest population number, and the longest Al–O bond length when the distance between the defects is 2.107 Å. Studying the bond length changes of the three systems after writing a hole, we obtain a result that the change of Al–O bond length is the smallest when the distance between defects is 2.107 Å. In conclusion, the data retention in the trapping layer of monoclinic HfO2 can be improved by doping the substitutional impurity Al. This work will provide a theoretical guidance for the performance improvement in the data retention of charge trapping memory.
-
Keywords:
- the first-principles /
- substitutional impurity Al /
- oxygen vacancy /
- hafnium oxide
[1] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F, Chan K 1996 Appl. Phys. Lett. 68 1377
[2] Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H 2001 J. Appl. Phys. 89 2791
[3] Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511
[4] Tsai C Y, Chin A 2012 IEEE Trans. Electr. Dev. 59 252
[5] Jiang D D 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [姜丹丹 2012 博士学位论文 (合肥: 安徽大学)]
[6] Tsai C Y, Lee T H, Chin A 2011 IEEE Electron Dev. Lett. 32 381
[7] You H C, Hsu T H, Ko F H, Huang J W, Yang W L, Lei T F 2006 IEEE Electron Dev. Lett. 27 653
[8] Maikap S, Wang T Y, Tzeng P J, Lin C H, Tien T C, Lee L S, Yang J R, Tsai M J 2007 Appl. Phys. Lett. 90 262901
[9] Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908
[10] Tan Y N, Chim W K, Choi W K, Joo M S, Ng T H, Cho B J 2004 International Electron Devices Meeting CA USA, San Francisco, December 13-15, 2004, p889
[11] Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electr. Dev. 53 654
[12] Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electr. Dev. 51 1143
[13] Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electr. Dev. 58 3847
[14] Grillo M E, Elliott S D, Rodríguez J, Añez R, Coll D S, Suhane A, Breuil L, Arreghini A, Degraeve R, Shariq A, Beyer V, Czernohorsky M 2014 Comp. Mater. Sci. 81 178
[15] Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104
[16] Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104
[17] Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 Phys. Stat. Sol. B 251 1212
[18] Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301
[19] Wang L G, Xiong Y, Xiao W, Cheng L, Du J, Tu H, Walle A D 2014 Appl. Phys. Lett. 104 201903
[20] Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265
[21] Zhu W J, Tamagawa T, Gibson M, Furukawa T, Ma T P 2002 IEEE Electron Dev.Lett. 23 649
[22] Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15
[23] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[25] Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102
[26] Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]
[27] Foster A S, Gejo F Lopez, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117
[28] Zhu H, Tang C, Fonseca L R C, Ramprasad R 2012 J. Mater. Sci. 47 7399
[29] Zhang P X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p33 (in Chinese) [张培新,陈建华,魏群 2012 掺杂材料分子模拟与计算(北京:科学出版社)第33页]
[30] Zhu C X, Huo Z L, Xu Z G, Zhang M H, Wang Q, Liu J, Long S B, Liu M 2010 Appl. Phys. Lett. 97 253503
[31] Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306
-
[1] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F, Chan K 1996 Appl. Phys. Lett. 68 1377
[2] Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H 2001 J. Appl. Phys. 89 2791
[3] Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511
[4] Tsai C Y, Chin A 2012 IEEE Trans. Electr. Dev. 59 252
[5] Jiang D D 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [姜丹丹 2012 博士学位论文 (合肥: 安徽大学)]
[6] Tsai C Y, Lee T H, Chin A 2011 IEEE Electron Dev. Lett. 32 381
[7] You H C, Hsu T H, Ko F H, Huang J W, Yang W L, Lei T F 2006 IEEE Electron Dev. Lett. 27 653
[8] Maikap S, Wang T Y, Tzeng P J, Lin C H, Tien T C, Lee L S, Yang J R, Tsai M J 2007 Appl. Phys. Lett. 90 262901
[9] Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908
[10] Tan Y N, Chim W K, Choi W K, Joo M S, Ng T H, Cho B J 2004 International Electron Devices Meeting CA USA, San Francisco, December 13-15, 2004, p889
[11] Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electr. Dev. 53 654
[12] Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electr. Dev. 51 1143
[13] Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electr. Dev. 58 3847
[14] Grillo M E, Elliott S D, Rodríguez J, Añez R, Coll D S, Suhane A, Breuil L, Arreghini A, Degraeve R, Shariq A, Beyer V, Czernohorsky M 2014 Comp. Mater. Sci. 81 178
[15] Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104
[16] Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104
[17] Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 Phys. Stat. Sol. B 251 1212
[18] Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301
[19] Wang L G, Xiong Y, Xiao W, Cheng L, Du J, Tu H, Walle A D 2014 Appl. Phys. Lett. 104 201903
[20] Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265
[21] Zhu W J, Tamagawa T, Gibson M, Furukawa T, Ma T P 2002 IEEE Electron Dev.Lett. 23 649
[22] Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15
[23] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[25] Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102
[26] Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]
[27] Foster A S, Gejo F Lopez, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117
[28] Zhu H, Tang C, Fonseca L R C, Ramprasad R 2012 J. Mater. Sci. 47 7399
[29] Zhang P X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p33 (in Chinese) [张培新,陈建华,魏群 2012 掺杂材料分子模拟与计算(北京:科学出版社)第33页]
[30] Zhu C X, Huo Z L, Xu Z G, Zhang M H, Wang Q, Liu J, Long S B, Liu M 2010 Appl. Phys. Lett. 97 253503
[31] Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306
Catalog
Metrics
- Abstract views: 6438
- PDF Downloads: 206
- Cited By: 0