Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle calculation and photocatalytic performance of BixWO6 (1.81 ≤ x ≤ 2.01) with oxygen vacancies

He Jin-Yun Peng Dai-Jiang Wang Yan-Wu Long Fei Zou Zheng-Guang

Citation:

First principle calculation and photocatalytic performance of BixWO6 (1.81 ≤ x ≤ 2.01) with oxygen vacancies

He Jin-Yun, Peng Dai-Jiang, Wang Yan-Wu, Long Fei, Zou Zheng-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Semiconductor photocatalyst Bi2WO6 has an extensive application prospect in organic contaminant degradation.But its energy band is relatively large and the recombination rate of photon-generated carriers is high,which prohibit its rapid development and applications.Many methods such as ion doping,non-stoichiometry,semiconductor heterojunction have been used to improve the photocatalytic activity of Bi2WO6.But the improvement mechanism is still not very clear.In this paper,by using first principle density functional theory (DFT) calculation,we study the influences of oxygen vacancy on the bond length,charge population,band structure,defect formation energy,and density of states of Bi2WO6.On the basis of DFT calculation results,different non-stoichiometric BixWO6 (x=1.81,1.87,1.89,1.92,2.01) products with oxygen vacancies are synthesized through the solvothermal method.The products are characterized by X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy,UV-vis diffuse reflectance spectra photoluminescence spectroscopy,and X-ray Fluorescence.The effects of non-stoichiometric Bi element on crystal structure,chemical composition,the number of oxygen vacancies,microstructure,and photocatalytic properties are investigated and the improvement mechanism of the photocatalytic property is explored.The DFT calculation results reveal that the formation energies of Bi16W8O48 are different for the three kinds of oxygen vacancies and the bond lengths of Bi–O and W–O with one oxygen vacancy decrease a little and the bond populations decrease significantly for the Bi and W atoms adjacent to oxygen vacancy.The existence of oxygen vacancies forms O 2p impurity energy level and significantly reduces the band gap of Bi2WO6. The absorption spectra indicate that the absorption intensities in the visible light increase for the Bi16W8O48 cell with oxygen vacancy defects increasing.The DFT calculation results show that oxygen vacancy defects promote the formation of photoelectrons and enhance the photocatalytic performance of Bi2WO6.The experimental results show that non-stoichiometric Bi element makes the crystal structure slightly deformed and significantly affects the number of oxygen vacancies,photoabsorption capacity and the electron-hole recombination of Bi2WO6.The Bi1.89WO6 product has the best photocatalytic performance,and the rhodamine B is degraded by 98% after being irradiated for 180 min by visible light.Therefore,non-stoichiometric semiconductor with oxygen vacancy is testified to be an efficient method of obtaining high activity photocatalyst.
      Corresponding author: Peng Dai-Jiang, pengdj@glut.edu.cn;wangyw@glut.edu.cn ; Wang Yan-Wu, pengdj@glut.edu.cn;wangyw@glut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51662005) and the Guangxi Natural Science Foundation, China (Grant No. 2016GXNSFAA380101).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Jing L, Sun X 2003 Sol. Energy Mater. Sol. Cells 79 133

    [3]

    Liu Y, Yu L, Wei Z G, Pan Z C, Zou Y D, Xie Y H 2013 Chem. J. Chin. Univ. (in Chinese) [刘月, 余林, 魏志钢, 潘湛昌, 邹燕娣, 谢英豪 2013 高等学校化学学报 34 434]

    [4]

    Carp O, Huisman C L, Reller A 2004 Prog. Solid State Chem. 32 33

    [5]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [6]

    Wang P, Huang B, Lou Z 2010 Chem. Eur. J. 16 538

    [7]

    Kubacka A, Fern Ndezgarc A M, Col N G 2012 Chem. Rev. 112 1555

    [8]

    Kudo A, Omori K, Kato H 1999 J. Am. Chem. Soc. 121 11459

    [9]

    Fu H, Pan C, Yao W 2005 J. Phys. Chem. B 109 22432

    [10]

    Zhang L, Wang W, Yang 2006 J. Appl. Catal. A 308 105

    [11]

    Lai K, Zhu Y, Lu J 2013 Comput. Mater. Sci. 67 88

    [12]

    Zeng D W, Xie C S, Zhu B L 2003 Mater. Sci. Eng. B 104 68

    [13]

    Zhang L, Wang W, Zhou L 2007 Small 3 1618

    [14]

    Zhang Z, Wang W, Gao E 2012 J. Phys. Chem. C 116 25898

    [15]

    Bhattacharya C, Lee H C, Bard A J 2013 J. Phys. Chem. C 117 9633

    [16]

    Sun Z X, Li X F, Guo S, Wang H Q, Wu Z B 2013 J. Colloid Interf. Sci. 412 31

    [17]

    Kuo T J, Lin C N, Kuo C L, Huang M H 2007 Chem. Mater. 19 5143

    [18]

    Wang J C, Liu P, Fu X Z, Li Z H, Han W, Wang X X 2009 Langmuir. 25 1218

    [19]

    Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F, Zhu Y J 2007 Inorg. Chem. 46 6675

    [20]

    Gong X Q, Selloni A, Batzil M 2006 Nat. Mater. 5 665

    [21]

    Zhang Z, Wang W, Gao E, Shang M, Xu J 2011 J. Hazard Mater. 196 255

    [22]

    Nie Z, Ma D, Fang G Y, Chen W, Huang S M 2016 J. Mater. Chem. A 4 2438

    [23]

    Mcdowell N A, Knight K S 2006 Chem. Eur. J. 12 1493

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I 2008 Phys. Rev. Lett. 101 136406

    [25]

    Lu Q, Hua L G, Chen Y L 2015 J. Inorg. Mater. 30 413 (in Chinese) [卢青, 华罗光, 陈亦琳 2015 无机材料学报 30 413]

    [26]

    Zhou B, Zhao X, Liu H 2010 Appl. Catal. B 99 214

    [27]

    Sun S B, Chang X T, Li Z J 2012 Mater. Charact. 73 130

    [28]

    Lin Z, Wang W, Liu S 2006 J. Mol. Catal. A 252 120

    [29]

    Wu J, Duan F, Zheng Y 2007 J. Phys. Chem. C 111 12866

    [30]

    Ding X, Zhao K, Zhang L 2014 Environ. Sci. Technol. 48 5823

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Jing L, Sun X 2003 Sol. Energy Mater. Sol. Cells 79 133

    [3]

    Liu Y, Yu L, Wei Z G, Pan Z C, Zou Y D, Xie Y H 2013 Chem. J. Chin. Univ. (in Chinese) [刘月, 余林, 魏志钢, 潘湛昌, 邹燕娣, 谢英豪 2013 高等学校化学学报 34 434]

    [4]

    Carp O, Huisman C L, Reller A 2004 Prog. Solid State Chem. 32 33

    [5]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [6]

    Wang P, Huang B, Lou Z 2010 Chem. Eur. J. 16 538

    [7]

    Kubacka A, Fern Ndezgarc A M, Col N G 2012 Chem. Rev. 112 1555

    [8]

    Kudo A, Omori K, Kato H 1999 J. Am. Chem. Soc. 121 11459

    [9]

    Fu H, Pan C, Yao W 2005 J. Phys. Chem. B 109 22432

    [10]

    Zhang L, Wang W, Yang 2006 J. Appl. Catal. A 308 105

    [11]

    Lai K, Zhu Y, Lu J 2013 Comput. Mater. Sci. 67 88

    [12]

    Zeng D W, Xie C S, Zhu B L 2003 Mater. Sci. Eng. B 104 68

    [13]

    Zhang L, Wang W, Zhou L 2007 Small 3 1618

    [14]

    Zhang Z, Wang W, Gao E 2012 J. Phys. Chem. C 116 25898

    [15]

    Bhattacharya C, Lee H C, Bard A J 2013 J. Phys. Chem. C 117 9633

    [16]

    Sun Z X, Li X F, Guo S, Wang H Q, Wu Z B 2013 J. Colloid Interf. Sci. 412 31

    [17]

    Kuo T J, Lin C N, Kuo C L, Huang M H 2007 Chem. Mater. 19 5143

    [18]

    Wang J C, Liu P, Fu X Z, Li Z H, Han W, Wang X X 2009 Langmuir. 25 1218

    [19]

    Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F, Zhu Y J 2007 Inorg. Chem. 46 6675

    [20]

    Gong X Q, Selloni A, Batzil M 2006 Nat. Mater. 5 665

    [21]

    Zhang Z, Wang W, Gao E, Shang M, Xu J 2011 J. Hazard Mater. 196 255

    [22]

    Nie Z, Ma D, Fang G Y, Chen W, Huang S M 2016 J. Mater. Chem. A 4 2438

    [23]

    Mcdowell N A, Knight K S 2006 Chem. Eur. J. 12 1493

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I 2008 Phys. Rev. Lett. 101 136406

    [25]

    Lu Q, Hua L G, Chen Y L 2015 J. Inorg. Mater. 30 413 (in Chinese) [卢青, 华罗光, 陈亦琳 2015 无机材料学报 30 413]

    [26]

    Zhou B, Zhao X, Liu H 2010 Appl. Catal. B 99 214

    [27]

    Sun S B, Chang X T, Li Z J 2012 Mater. Charact. 73 130

    [28]

    Lin Z, Wang W, Liu S 2006 J. Mol. Catal. A 252 120

    [29]

    Wu J, Duan F, Zheng Y 2007 J. Phys. Chem. C 111 12866

    [30]

    Ding X, Zhao K, Zhang L 2014 Environ. Sci. Technol. 48 5823

  • [1] Shi Xiao-Hong, Chen Jing-Jin, Cao Xin-Rui, Wu Shun-Qing, Zhu Zi-Zhong. Formation of oxygen vacancies in Li-rich Mn-based cathode material Li1.167Ni0.167Co0.167Mn0.5O2. Acta Physica Sinica, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [2] Wang Ze-Pu, Fu Nian, Yu Han, Xu Jing-Wei, He Qi, Zheng Shu-Kai, Ding Bang-Fu, Yan Xiao-Bing. Enhancing oxygen vacancy photocatalytic efficiency of bismuth tungstate using In-doped W site. Acta Physica Sinica, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [3] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [4] Li Ping, Li Hai-Jin, Tu Wen-Guang, Zhou Yong, Zou Zhi-Gang. Photocatalytic application of Z-type system. Acta Physica Sinica, 2015, 64(9): 094209. doi: 10.7498/aps.64.094209
    [5] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [6] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [8] Gong Yu, Chen Bai-Hua, Xiong Liang-Ping, Gu Mei, Xiong Jie, Gao Xiao-Ling, Luo Yang-Ming, Hu Sheng, Wang Yu-Hua. Effect of oxygen vacancies on the fluorescence and phosphorescence properties of Ca5MgSi3O12:Eu2+, Dy3+. Acta Physica Sinica, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [9] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [10] Ning Kai-Jie, Zhang Qing-Li, Zhou Peng-Yu, Yang Hua-Jun, Xu Lan, Sun Dun-Lu, Yin Shao-Tang. Structure and spectral properties of Yb3+:Gd2SiO5 crystal. Acta Physica Sinica, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [11] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [12] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [13] Hu Yan-Chun, Wang Yan-Wen, Zhang Ke-Lei, Wang Hai-Ying, Ma Heng, Lu Qing-Feng. Hole doping effects on structure and magnetic properties of Sr2FeMoO6. Acta Physica Sinica, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [14] Liu Jian, Wang Chun-Lei, Su Wen-Bin, Wang Hong-Chao, Zhang Jia-Liang, Mei Liang-Mo. Influence of niobium doping on crystal structure and thermoelectric property of reduced titanium dioxide ceramics. Acta Physica Sinica, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [15] Ju Dong-Ying, Ding Wan-Yu, Chai Wei-Ping, Wang Hua-Lin. Composition and crystal structure of N doped TiO2 film deposited with different O2 flow rates. Acta Physica Sinica, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [16] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [17] Zhang Li-Jie, Lei Ming, Wang Yu-Ming, Li Jian-Li, Sun Yu, Liu Jing-He. Growth, structure and spectral properties of Yb3+-doped KY(WO4)2 laser crystal. Acta Physica Sinica, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [18] Yan Cheng-Feng, Zhao Guang-Jun, Hang Yin, Zhang Lian-Han, Xu Jun. Crystal structure and optical characterization of cerium-doped Lu2Si2O7. Acta Physica Sinica, 2005, 54(8): 3745-3748. doi: 10.7498/aps.54.3745
    [19] Fu Guang-Cai, Li Ming-Xing, Dong Cheng, Guo Juan, Yang Li-Hong. Structural, transport and magnetic properties of KxCoO2·yH2O(x<0.2, y≤0.8). Acta Physica Sinica, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
    [20] Yao Ming-Zhen, Gu Mu. Theoretical study on defects associated with oxygen vacancy in PbWO4 crystal. Acta Physica Sinica, 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
Metrics
  • Abstract views:  7043
  • PDF Downloads:  287
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2017
  • Accepted Date:  25 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回