Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2

Zhang He Luo Jun Zhu Hang-Tian Liu Quan-Lin Liang Jing-Kui Rao Guang-Hui

Citation:

Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2

Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • CuxAg1-xSbTe2 samples withx = 00.3 are prepared by a combined process of melt-quenching and spark plasma sintering (SPS). X-ray powder diffraction (XRD) analysis indicates that single phase samples with the NaCl-type structure are obtained for the Cu-doped samples before SPS treatment, whereas a small quantity of Ag2Te impurities coexist with the main cubic phase for the sample without Cu. According to our thermoanalysis and XRD results, the substitution of Cu for Ag can effectively prevent the precipitation of Ag2Te, but this also leads to the presence of a minor amorphous phase in the melt-quenched sample. The amorphous phase crystallizes into Sb7Te metastable phase at about 540 K, which finally transforms into the stable Sb2Te3 compound. After the SPS treatment of the melt-quenched sample, the sample withx=0.1 remains a single phase with the face-centered-cubic crystal structure, while Sb7Te and Sb2Te3 are precipitated as the second phases for the samples withx = 0.2 and 0.3, respectively. The electrical conductivity increases and the Seebeck coefficient decreases with the addition of Cu due to the existence of the second phase in the samples withx = 0.2 and 0.3. Accordingly, thermal conductivities also increase with the addition of Cu, leading to the reduced thermoelectric performance of thex= 0.2 and 0.3 samples. For the sample withx = 0.1, its power factor is comparable to that of the literature reported AgSbTe2 compound. As a result of so-called alloying effect, the phonon scattering effect is enhanced due to the partial replacement of Ag by Cu, leading to the reduced thermal conductivity of thex = 0.1 sample. Therefore, the Cu0.1Ag0.9SbTe2 sample exhibits the promising thermoelectric performance and a dimensionless thermoelectric figure of merit (ZT) value of 1 is achieved at 620 K.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11144002), the State Key Development Program for Basic Research of China (Grant No. 2007CB925003), and the Major Program of Science and Technology Research of Ministry of Education, China (Grant No. 309006).
    [1]

    Tritt T M 1999 Science 283 804

    [2]

    Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)

    [3]

    Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178

    [4]

    Vining C B 2008 Nat. Mater. 7 765

    [5]

    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708

    [6]

    Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057

    [7]

    Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855

    [8]

    Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081

    [9]

    Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712

    [10]

    Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712

    [11]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873

    [12]

    Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120

    [13]

    Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203

    [14]

    Sales B C 2002 Science 295 1248

    [15]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043

    [16]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168

    [17]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [18]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818

    [19]

    Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403

    [20]

    Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450

    [21]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [22]

    Hockings E F 1959 J. Phys. Chem. Solids 10 341

    [23]

    Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415

    [24]

    Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104

    [25]

    Majer R G 1963 Z. Metall. 54 311

    [26]

    Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730

    [27]

    Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299

    [28]

    McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785

    [29]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203

    [30]

    Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707

    [31]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [32]

    Petzow G, Effenberg G 1988 Ternary Alloys 2 554

    [33]

    Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747

    [34]

    Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039

    [35]

    Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352

    [36]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [37]

    Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [38]

    Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521

    [39]

    Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249

  • [1]

    Tritt T M 1999 Science 283 804

    [2]

    Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)

    [3]

    Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178

    [4]

    Vining C B 2008 Nat. Mater. 7 765

    [5]

    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708

    [6]

    Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057

    [7]

    Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855

    [8]

    Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081

    [9]

    Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712

    [10]

    Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712

    [11]

    Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873

    [12]

    Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120

    [13]

    Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203

    [14]

    Sales B C 2002 Science 295 1248

    [15]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043

    [16]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168

    [17]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [18]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818

    [19]

    Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403

    [20]

    Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450

    [21]

    Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901

    [22]

    Hockings E F 1959 J. Phys. Chem. Solids 10 341

    [23]

    Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415

    [24]

    Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104

    [25]

    Majer R G 1963 Z. Metall. 54 311

    [26]

    Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730

    [27]

    Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299

    [28]

    McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785

    [29]

    Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203

    [30]

    Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707

    [31]

    Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202

    [32]

    Petzow G, Effenberg G 1988 Ternary Alloys 2 554

    [33]

    Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747

    [34]

    Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039

    [35]

    Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352

    [36]

    Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184

    [37]

    Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106

    [38]

    Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521

    [39]

    Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249

  • [1] Li Rui-Ying, Luo Ting-Ting, Li Mao, Chen Shuo, Yan Yong-Gao, Wu Jin-Song, Su Xian-Li, Zhang Qing-Jie, Tang Xin-Feng. Defect structure regulation and thermoelectric transfer performance in n-type Bi2–x SbxTe3–ySey-based compounds. Acta Physica Sinica, 2024, 73(9): 097101. doi: 10.7498/aps.73.20240098
    [2] Li Qiao-Li, Li Shen-Shen, Xiao Ji-Jun, Chen Zhao-Xu. First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure. Acta Physica Sinica, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [3] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [5] Li Cai-Yun, He Wen-Ke, Wang Dong-Yang, Zhang Xiao, Zhao Li-Dong. Realizing high thermoelectric performance in SnSe2 via intercalating Cu. Acta Physica Sinica, 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [6] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [7] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [8] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [9] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [10] Hu Yan-Chun, Wang Yan-Wen, Zhang Ke-Lei, Wang Hai-Ying, Ma Heng, Lu Qing-Feng. Hole doping effects on structure and magnetic properties of Sr2FeMoO6. Acta Physica Sinica, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [11] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [12] Ning Kai-Jie, Zhang Qing-Li, Zhou Peng-Yu, Yang Hua-Jun, Xu Lan, Sun Dun-Lu, Yin Shao-Tang. Structure and spectral properties of Yb3+:Gd2SiO5 crystal. Acta Physica Sinica, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [13] Ju Dong-Ying, Ding Wan-Yu, Chai Wei-Ping, Wang Hua-Lin. Composition and crystal structure of N doped TiO2 film deposited with different O2 flow rates. Acta Physica Sinica, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [14] Liu Jian, Wang Chun-Lei, Su Wen-Bin, Wang Hong-Chao, Zhang Jia-Liang, Mei Liang-Mo. Influence of niobium doping on crystal structure and thermoelectric property of reduced titanium dioxide ceramics. Acta Physica Sinica, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [15] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [16] Luo Wen-Hui, Li Han, Lin Ze-Bing, Tang Xin-Feng. Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide. Acta Physica Sinica, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [17] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [18] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [19] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [20] Fu Guang-Cai, Li Ming-Xing, Dong Cheng, Guo Juan, Yang Li-Hong. Structural, transport and magnetic properties of KxCoO2·yH2O(x<0.2, y≤0.8). Acta Physica Sinica, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
Metrics
  • Abstract views:  8466
  • PDF Downloads:  1011
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2011
  • Accepted Date:  28 April 2012
  • Published Online:  20 April 2012

/

返回文章
返回