Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure

Li Qiao-Li Li Shen-Shen Xiao Ji-Jun Chen Zhao-Xu

Citation:

First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure

Li Qiao-Li, Li Shen-Shen, Xiao Ji-Jun, Chen Zhao-Xu
PDF
HTML
Get Citation
  • The crystal structure, molecular structure, electronic structure and mechanical properties of molecular perovskite high-energetic material (H2dabco)[K(ClO4)3] (DAP-2) under hydrostatic pressure ranging from 0 to 50 GPa are calculated and studied based on density functional theory. And the influences of pressure on its stability and impact sensitivity of DAP-2 are investigated. As the external pressure gradually increases, both the lattice parameters and the volume of DAP-2 crystal exhibit a monotonic decreasing trend. In the entire pressure range, the unit cell volume shrinks by up to 40.20%. By using the Birch Munnaghan equation of state to fit P-V relation, the bulk modulus B0 and its first-order derivative B0’ with respect to pressure are obtained to be 23.4 GPa and 4.9 GPa, respectively. The observations of the characteristic bond length and bond angle within the crystal indicate that the cage-like structure of organic cation H2dabco2+ undergoes distortion at 25 GPa. Further analysis of the average fractional coordinates of the center-of-mass and Euler angles for H2dabco2+ and KO12 polyhedron shows that within a pressure range from 0 to 50 GPa, both the average fractional coordinates of the center-of-mass and the Euler angles exhibit fluctuations at 25 GPa, but the overall amplitude of these fluctuations is very small. Based on this finding, it is speculated that the space group symmetry of the crystal may remain unchanged in the entire pressure range. In terms of electronic structure, with the increase of pressure, the band gap value increases rapidly and reaches a maximum value at about 20 GPa, followed by a slow decreasing trend. Based on the first-principles band gap criterion and the variation of the band gap under different pressures, it is demonstrated that below 20 GPa, the impact sensitivity of DAP-2 gradually decreases with pressure increasing; however, when the pressure exceeds 20 GPa, the impact sensitivity exhibits a slow increasing trend. In addition, the elastic constants Cij, Young’s modulus (E), bulk modulus (B), shear modulus (G), and Cauchy pressure (C12C44) all increase with pressure rising, indicating that the rigidity and ductility of the crystal under pressure are significantly strengthened. According to the mechanical stability criterion, the crystal maintains the mechanical stability throughout the pressure range.
      Corresponding author: Xiao Ji-Jun, xiao_jijun@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572160).
    [1]

    Agrawal J P, Hodgson R 2007 Organic Chemistry of Explosives (New York: Wiley

    [2]

    Agrawal J P 2005 Propel. Explos. Pyrot. 30 316Google Scholar

    [3]

    Yu Q, Yin P, Zhang J H, He C L, Imler G H, Parrish D A, Shreeve J M 2017 J. Am. Chem. Soc. 139 8816Google Scholar

    [4]

    Kumar D, Imler G H, Parrish D A 2017 J. Mater. Chem. A 5 16767Google Scholar

    [5]

    Bennion J C, Siddiqi Z R, Matzger A J 2017 Chem. Commun. 53 6065Google Scholar

    [6]

    Zhang J H, Dharavath S, Mitchell L A, Parrish D A, Shreeve J M 2016 J. Am. Chem. Soc. 138 7500Google Scholar

    [7]

    He C, Shreeve J M 2016 Angew. Chem. 128 782Google Scholar

    [8]

    Liu W, Liu W L, Pang S P 2017 RSC Adv. 7 3617Google Scholar

    [9]

    Xu J G, Sun C, Zhang M J, Liu B W, Li X Z, Lu J, Wang S H, Zheng F K, Guo G C 2017 Chem. Mater. 29 9725Google Scholar

    [10]

    Sun C G, Zhang C, Jiang C, Yang C, Du Y, Zhao Y, Hu B C, Zheng Z S, Christe K O 2018 Nat. Commun. 9 1269Google Scholar

    [11]

    Wang S, Wang Q Y, Feng X, Wang B, Yang L 2017 Adv. Mater. 29 1701898Google Scholar

    [12]

    Shen C, Liu Y, Zhu Z Q, Xu Y G, Lu M 2017 Chem. Commun. 53 7489Google Scholar

    [13]

    Lin J D, Li Y H, Xu J G, Zheng F K, Guo G C, Lv R X, He W C, Huang Z N, Liu J F 2018 J. Solid State Chem. 265 42Google Scholar

    [14]

    Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F, Flippen-Anderson J L 1998 Tetrahedron 54 11793Google Scholar

    [15]

    Liao W Q, Zhao D W, Tang Y Y, Zhang Y, Li P F, Shi P P, Chen X G, You Y M, Xiong R G 2019 Science 363 1206Google Scholar

    [16]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [17]

    徐豪杰, 韩世国, 孙志华, 罗军华 2021 化学学报 79 23Google Scholar

    Luo J H, Sun Z H, Han S G, Xu H J 2021 Acta Chim. Sin. 79 23Google Scholar

    [18]

    He Y P, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Guo Y L, Liu C, Tanaka H, Nakamura E 2015 J. Phys. Chem. Lett. 6 535Google Scholar

    [21]

    Chen S L, Yang Z R, Wang B J, Shang Y, Sun L Y, He C T, Zhou H L, Zhang W X, Chen X M 2018 Sci. China Mater. 61 1123Google Scholar

    [22]

    Chen S L, Shang Y, He C T, Sun L Y, Ye Z M, Zhang W X, Chen X M 2018 CrystEngComm 20 7458Google Scholar

    [23]

    Shang Y, Huang R K, Chen S L, He C T, Yu Z H, Ye Z M, Zhang W X, Chen X M, Design 2020 Cryst. Growth Des. 20 1891Google Scholar

    [24]

    Shang Y, Yu Z H, Huang R K, Chen S L, Liu D X, Chen X X, Zhang W X, Chen X M 2020 Eng. PRC. 6 1013

    [25]

    Shang Y, Chen S L, Yu Z H, Huang R K, He C T, Ye Z M, Zhang W X, Chen X M 2022 Inorg. Chem. 61 4143Google Scholar

    [26]

    Feng Y, Zhang J, Cao W, Zhang J, Shreeve J n M 2023 Nat. Commun. 14 7765Google Scholar

    [27]

    Chen S, Yi Z, Jia C, Li Y, Chen H, Zhu S, Zhang L 2023 Small 19 2302631Google Scholar

    [28]

    Zhou J, Ding L, Bi F, Wang B, Zhang J 2018 J. Anal. Appl. Pyrolysis 129 189Google Scholar

    [29]

    An T, He W, Chen S W, Zuo B L, Qi X F, Zhao F Q, Luo Y J, Yan Q L 2018 J. Phys. Chem. C 122 26956Google Scholar

    [30]

    Jia Q, Deng P, Li X X, Hu L S, Cao X 2020 Vacuum 175 109257Google Scholar

    [31]

    Deng P, Wang H, Yang X, Ren H, Jiao Q J 2020 J. Alloy. Compd. 827 154257Google Scholar

    [32]

    Zhou J, Ding L, Zhao F Q, Wang B, Zhang J L 2020 Chin. Chem. Lett. 31 554Google Scholar

    [33]

    Li X X, Hu S Q, Cao X, Hu L S, Deng P, Xie Z B 2020 J. Energ. Mater. 38 162Google Scholar

    [34]

    Jia Q, Bai X, Zhu S, Cao X, Deng P, Hu L 2019 J. Energ. Mater. 38 377

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [39]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Ganose A M, Savory C N, Scanlon D O 2015 J. Phys. Chem. Lett. 6 4594Google Scholar

    [42]

    P J, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X l, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [43]

    Le Page Y, Saxe P 2002 Phys. Rev. B 65 104104Google Scholar

    [44]

    Alyoubi R Y, Raffah B M, Hamioud F, Mubarak A A 2021 Mod. Phys. Lett. B 35 2150056

    [45]

    Murnaghan F D 1944 P. Natl. Acad. Sci. USA 30 244Google Scholar

    [46]

    Feng G Q, Jiang X X, Wei W J, Gong P F, Kang L, Li Z H, Li Y C, Li X D, Wu X S, Lin Z S 2016 Dalton T. 45 4303Google Scholar

    [47]

    Agrawal P M, Rice B M, Zheng L Q, Velardez G F, Thompson D L 2006 J. Phys. Chem. B 110 5721Google Scholar

    [48]

    Agrawal P M, Rice B M, Zheng L Q, Thompson D L 2006 J. Phys. Chem. B 110 26185Google Scholar

    [49]

    Xiao H M, Li Y F 1995 Sci. China Ser. B 5 538

    [50]

    Zhu W H, Xiao J J, Ji G F, Zhao F, Xiao H M 2007 J. Phys. Chem. B 111 12715Google Scholar

    [51]

    Xu X J, Zhu W H, Xiao H M 2007 J. Phys. Chem. B 111 2090Google Scholar

    [52]

    Zhu W H, Xiao H M 2008 J. Comput. Chem. 29 176Google Scholar

    [53]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657Google Scholar

    [54]

    Fan J Y, Su Y, Zheng Z Y, Zhang Q Y, Zhao J J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [55]

    Wu Q, Zhu W, Xiao H 2014 Struct. Chem. 26 477

    [56]

    Xiang F, Wu Q, Zhu W H, Xiao H M 2014 Struct. Chem. 25 1625Google Scholar

    [57]

    Wang W P, Liu F S, Liu Q J, Wang Y G, Liu Z T 2016 Comp. Mater. Sci. 121 225Google Scholar

    [58]

    Feng J 2014 APL Mater. 2 081801Google Scholar

    [59]

    袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟 2024 物理学报 73 086104Google Scholar

    Yuan W L, Yao B X, Li X, Hu S B, Ren W 2024 Acta Phys. Sin. 73 086104Google Scholar

    [60]

    Liu Q J, Ran Z, Liu F S, Liu Z T 2015 J. Alloys Compd. 631 192Google Scholar

    [61]

    Chen S, Sun Y, Duan Y H, Huang B, Peng M J 2015 J. Alloys Compd. 630 202Google Scholar

    [62]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [63]

    Jund P, Viennois R, Tao X M, Niedziolka K, Tédenac J C 2012 Phys. Rev. B 85 224105Google Scholar

  • 图 1  (a) DAP-2单胞的多面体模型示意图; (b) DAP-2单胞的球棍模型示意图; (c) 有机阳离子H2dabco2+结构, K, O, Cl, C, N和H原子分别用蓝紫色、粉色、绿色、深灰色、蓝色和浅灰色表示, 而N—H…O键用青色虚线表示, 对称性代码: A: –z+1, –x+1, –y+1; B: –y+1/2, z –1/2, x; C: x –1/2, y, –z+3/2; D: z –1/2, –x+1/2, –y+1; E: x, y, z; F: –y+1/2, –z+1, x+1/2

    Figure 1.  (a) Schematic diagram of the polyhedral model for the unit cell of DAP-2; (b) schematic diagram of the ball-and-stick model for the unit cell of DAP-2; (c) structure of the organic cation H2dabco2+. The atoms of K, O, Cl, C, N and H are represented by blue purple, pink, green, dark gray, blue, and light gray, respectively, while N—H···O bonds are represented by cyan dashed lines. Symmetry code: A: –z+1, –x+1, –y+1; B: –y+1/2, z –1/2, x; C: x –1/2, y, –z+3/2; D: z –1/2, –x+1/2, –y+1; E: x, y, z; F: –y+1/2, –z+1, x+1/2.

    图 2  不同压力下DAP-2的晶格常数a (a)和晶胞体积V (b)

    Figure 2.  Lattice constant a (a) and cell volume V (b) of DAP-2 crystal under different pressures.

    图 3  不同压力下DAP-2晶体中部分键长

    Figure 3.  Partial bond lengths in DAP-2 crystal under different pressures.

    图 4  不同压力下DAP-2晶体中部分键角

    Figure 4.  Partial bond angles in DAP-2 crystal under different pressures.

    图 5  有机阳离子的结构变化

    Figure 5.  Structural changes of organic cations H2dabco2+.

    图 6  不同压力下H2dabco2+阳离子的质心平均分数坐标(a)与欧拉角(b)

    Figure 6.  The average fractional coordinates of the centers-of-mass (a) and Euler angle (b) of H2dabco2+ cation under different pressures.

    图 7  不同压力下K1O12多面体(a)与K2O12多面体(b)的欧拉角

    Figure 7.  Euler angles of K1O12 polyhedron (a) and K2O12 polyhedron (b) under different pressures.

    图 8  不同压力下DAP-2晶体的带隙值

    Figure 8.  Band gap values of DAP-2 crystal under different pressures

    图 9  0 GPa时DAP-2晶体的总态密度和分态密度图

    Figure 9.  Total density of states and partial density of states of DAP-2 crystal at 0 GPa.

    图 10  不同压力下DAP-2晶体的态密度图

    Figure 10.  Density of states of DAP-2 crystals under different pressures.

    图 11  不同压力下DAP-2晶体的弹性常数及其模量 (a)弹性常数; (b)力学稳定性; (c)B, G, E; (d)C11C44

    Figure 11.  Elastic constants and moduli of DAP-2 crystal under different pressures: (a) Elastic constants; (b) mechanical stability; (c) B, G, E; (d) C11C44.

    表 1  DAP-2晶胞参数的计算值与实验值

    Table 1.  The calculated and experimental values of crystal cell parameters for DAP-2.

    Method a Δa/% α/(°) V3 ΔV/%
    Experiment[21] 14.291 90 2918.689
    PBE 14.530 +1.67 90 3067.650 +5.10
    PBEsol 14.288 –0.02 90 2917.954 –0.03
    PBE+D3 14.282 –0.06 90 2913.178 –0.19
    DownLoad: CSV
  • [1]

    Agrawal J P, Hodgson R 2007 Organic Chemistry of Explosives (New York: Wiley

    [2]

    Agrawal J P 2005 Propel. Explos. Pyrot. 30 316Google Scholar

    [3]

    Yu Q, Yin P, Zhang J H, He C L, Imler G H, Parrish D A, Shreeve J M 2017 J. Am. Chem. Soc. 139 8816Google Scholar

    [4]

    Kumar D, Imler G H, Parrish D A 2017 J. Mater. Chem. A 5 16767Google Scholar

    [5]

    Bennion J C, Siddiqi Z R, Matzger A J 2017 Chem. Commun. 53 6065Google Scholar

    [6]

    Zhang J H, Dharavath S, Mitchell L A, Parrish D A, Shreeve J M 2016 J. Am. Chem. Soc. 138 7500Google Scholar

    [7]

    He C, Shreeve J M 2016 Angew. Chem. 128 782Google Scholar

    [8]

    Liu W, Liu W L, Pang S P 2017 RSC Adv. 7 3617Google Scholar

    [9]

    Xu J G, Sun C, Zhang M J, Liu B W, Li X Z, Lu J, Wang S H, Zheng F K, Guo G C 2017 Chem. Mater. 29 9725Google Scholar

    [10]

    Sun C G, Zhang C, Jiang C, Yang C, Du Y, Zhao Y, Hu B C, Zheng Z S, Christe K O 2018 Nat. Commun. 9 1269Google Scholar

    [11]

    Wang S, Wang Q Y, Feng X, Wang B, Yang L 2017 Adv. Mater. 29 1701898Google Scholar

    [12]

    Shen C, Liu Y, Zhu Z Q, Xu Y G, Lu M 2017 Chem. Commun. 53 7489Google Scholar

    [13]

    Lin J D, Li Y H, Xu J G, Zheng F K, Guo G C, Lv R X, He W C, Huang Z N, Liu J F 2018 J. Solid State Chem. 265 42Google Scholar

    [14]

    Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F, Flippen-Anderson J L 1998 Tetrahedron 54 11793Google Scholar

    [15]

    Liao W Q, Zhao D W, Tang Y Y, Zhang Y, Li P F, Shi P P, Chen X G, You Y M, Xiong R G 2019 Science 363 1206Google Scholar

    [16]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [17]

    徐豪杰, 韩世国, 孙志华, 罗军华 2021 化学学报 79 23Google Scholar

    Luo J H, Sun Z H, Han S G, Xu H J 2021 Acta Chim. Sin. 79 23Google Scholar

    [18]

    He Y P, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Guo Y L, Liu C, Tanaka H, Nakamura E 2015 J. Phys. Chem. Lett. 6 535Google Scholar

    [21]

    Chen S L, Yang Z R, Wang B J, Shang Y, Sun L Y, He C T, Zhou H L, Zhang W X, Chen X M 2018 Sci. China Mater. 61 1123Google Scholar

    [22]

    Chen S L, Shang Y, He C T, Sun L Y, Ye Z M, Zhang W X, Chen X M 2018 CrystEngComm 20 7458Google Scholar

    [23]

    Shang Y, Huang R K, Chen S L, He C T, Yu Z H, Ye Z M, Zhang W X, Chen X M, Design 2020 Cryst. Growth Des. 20 1891Google Scholar

    [24]

    Shang Y, Yu Z H, Huang R K, Chen S L, Liu D X, Chen X X, Zhang W X, Chen X M 2020 Eng. PRC. 6 1013

    [25]

    Shang Y, Chen S L, Yu Z H, Huang R K, He C T, Ye Z M, Zhang W X, Chen X M 2022 Inorg. Chem. 61 4143Google Scholar

    [26]

    Feng Y, Zhang J, Cao W, Zhang J, Shreeve J n M 2023 Nat. Commun. 14 7765Google Scholar

    [27]

    Chen S, Yi Z, Jia C, Li Y, Chen H, Zhu S, Zhang L 2023 Small 19 2302631Google Scholar

    [28]

    Zhou J, Ding L, Bi F, Wang B, Zhang J 2018 J. Anal. Appl. Pyrolysis 129 189Google Scholar

    [29]

    An T, He W, Chen S W, Zuo B L, Qi X F, Zhao F Q, Luo Y J, Yan Q L 2018 J. Phys. Chem. C 122 26956Google Scholar

    [30]

    Jia Q, Deng P, Li X X, Hu L S, Cao X 2020 Vacuum 175 109257Google Scholar

    [31]

    Deng P, Wang H, Yang X, Ren H, Jiao Q J 2020 J. Alloy. Compd. 827 154257Google Scholar

    [32]

    Zhou J, Ding L, Zhao F Q, Wang B, Zhang J L 2020 Chin. Chem. Lett. 31 554Google Scholar

    [33]

    Li X X, Hu S Q, Cao X, Hu L S, Deng P, Xie Z B 2020 J. Energ. Mater. 38 162Google Scholar

    [34]

    Jia Q, Bai X, Zhu S, Cao X, Deng P, Hu L 2019 J. Energ. Mater. 38 377

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [39]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Ganose A M, Savory C N, Scanlon D O 2015 J. Phys. Chem. Lett. 6 4594Google Scholar

    [42]

    P J, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X l, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [43]

    Le Page Y, Saxe P 2002 Phys. Rev. B 65 104104Google Scholar

    [44]

    Alyoubi R Y, Raffah B M, Hamioud F, Mubarak A A 2021 Mod. Phys. Lett. B 35 2150056

    [45]

    Murnaghan F D 1944 P. Natl. Acad. Sci. USA 30 244Google Scholar

    [46]

    Feng G Q, Jiang X X, Wei W J, Gong P F, Kang L, Li Z H, Li Y C, Li X D, Wu X S, Lin Z S 2016 Dalton T. 45 4303Google Scholar

    [47]

    Agrawal P M, Rice B M, Zheng L Q, Velardez G F, Thompson D L 2006 J. Phys. Chem. B 110 5721Google Scholar

    [48]

    Agrawal P M, Rice B M, Zheng L Q, Thompson D L 2006 J. Phys. Chem. B 110 26185Google Scholar

    [49]

    Xiao H M, Li Y F 1995 Sci. China Ser. B 5 538

    [50]

    Zhu W H, Xiao J J, Ji G F, Zhao F, Xiao H M 2007 J. Phys. Chem. B 111 12715Google Scholar

    [51]

    Xu X J, Zhu W H, Xiao H M 2007 J. Phys. Chem. B 111 2090Google Scholar

    [52]

    Zhu W H, Xiao H M 2008 J. Comput. Chem. 29 176Google Scholar

    [53]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657Google Scholar

    [54]

    Fan J Y, Su Y, Zheng Z Y, Zhang Q Y, Zhao J J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [55]

    Wu Q, Zhu W, Xiao H 2014 Struct. Chem. 26 477

    [56]

    Xiang F, Wu Q, Zhu W H, Xiao H M 2014 Struct. Chem. 25 1625Google Scholar

    [57]

    Wang W P, Liu F S, Liu Q J, Wang Y G, Liu Z T 2016 Comp. Mater. Sci. 121 225Google Scholar

    [58]

    Feng J 2014 APL Mater. 2 081801Google Scholar

    [59]

    袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟 2024 物理学报 73 086104Google Scholar

    Yuan W L, Yao B X, Li X, Hu S B, Ren W 2024 Acta Phys. Sin. 73 086104Google Scholar

    [60]

    Liu Q J, Ran Z, Liu F S, Liu Z T 2015 J. Alloys Compd. 631 192Google Scholar

    [61]

    Chen S, Sun Y, Duan Y H, Huang B, Peng M J 2015 J. Alloys Compd. 630 202Google Scholar

    [62]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [63]

    Jund P, Viennois R, Tao X M, Niedziolka K, Tédenac J C 2012 Phys. Rev. B 85 224105Google Scholar

  • [1] Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun. First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions. Acta Physica Sinica, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [2] Hu Xue-Lan, Lu Rui-Zhi, Wang Zhi-Long, Wang Ya-Ru. First-principles study on effect of Re on micro structure and mechanical properties of Ni3Al intermetallics. Acta Physica Sinica, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [3] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] Song Qing-Gong, Zhao Jun-Pu, Gu Wei-Feng, Zhen Dan-Dan, Guo Yan-Rui, Li Ze-Peng. Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory. Acta Physica Sinica, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [5] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [6] Wu Qiong, Liu Jun, Dong Qian-Min, Liu Yang, Liang Pei, Shu Hai-Bo. Quantum confinement effect on electronic and optical properties of SnS. Acta Physica Sinica, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [7] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] Pan Min, Huang Zheng, Zhao Yong. Study on the electronic structures of Iridium-doped SmOFeAs under the strongly correlated electrons effects. Acta Physica Sinica, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [10] Tang Chun-Mei, Guo Wei, Zhu Wei-Hua, Liu Ming-Yi, Zhang Ai-Mei, Gong Jiang-Feng, Wang Hui. Density functional calculations of geomatric structure, electronic structure, stability, and magnetic properties of transitional atom endohedral unclassical fullerene M@C22(M=Sc,Ti, V, Cr, Mn, Fe, Co and Ni). Acta Physica Sinica, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [11] Cheng Liang, Gan Zhang-Hua, Liu Wei, Zhao Xing-Zhong. First principles calculations of the electronic structure and optical properties of pure and (Nb, N) co-doped anatase. Acta Physica Sinica, 2012, 61(23): 237107. doi: 10.7498/aps.61.237107
    [12] Cao Qing-Song, Yuan Yong-Bo, Xiao Chuan-Yun, Lu Rui-Feng, Kan Er-Jun, Deng Kai-Ming. Density functional study on the geometric and electronic properties of C80H80. Acta Physica Sinica, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [13] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [14] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [15] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [16] Tang Hui-Shuai, Zhang Xiu-Rong, Gao Cong-Hua, Wu Li-Qing. The theory study of electronic structures and spectram properties of WnNim(n+m≤7; m=1, 2) clusters. Acta Physica Sinica, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [17] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Wang Gui-Chun, Yuan Jian-Min. Structure and electronic properties of the low-dimensional copper systems. Acta Physica Sinica, 2003, 52(4): 970-977. doi: 10.7498/aps.52.970
Metrics
  • Abstract views:  1102
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2024
  • Accepted Date:  24 May 2024
  • Available Online:  07 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回