-
We optimize the possible geometrical cluster structures and predicte relative stability of (HMgN3)n(n=15) by using the hybrid density functional theory (B3LYP) with 6-311G* basis sets. And the most stable isomers of (HMgN3)n(n=15) clusters, the bond properties, charge distributions, vibrational properties, and stability are analyzed theoretically. The calculated results show that the most stable HMgN3 has a linear structure, the (HMgN)n(n=2,5) clusters have the most stable structures in which an N atom in a sub-system and metal atom in another sub-system constitute an MgNMg structure. And the most stable structures of (HMgN3)n(n=3,4) clusters are the chain structures in which the nitrogen cardinal extremity position N atom and the Mg atom form a ring structure; the metal Mg atoms in the most stable structure show charge positivity, and H atom show charge negativity. The middle N atoms of azido show charge positivity, the N atoms on both sides of azido show charge negativity; what's more, the N atoms influenced by Mg atoms directly show a more charge negativity. MgN bond and MgH bond are the typical ionic bond; the bond between N atoms in azido is the covalent bond. The infrared spectra of the most optimized (HMgN3)n(n=15) clusters have three vibrational sections, the strongest vibrational peak lies in 22582347 cm-1, and the vibrational mode is anti-symmetric stretching vibration of NN bonds in azido. Analysis of stability shows that (HMgN3)3 clusters are more stable than other clusters.
[1] Ludovic C, Imane S, Gilles D, Daniel B 2004 Tetrahedron Lett. 60 2079
[2] [3] Veronique B, Imane S, Daniel B, Raoul U 1997 Tetrahedron Lett. 38 7733
[4] [5] Shi M D 1992 Chin. J. Expl. Prop. 69 24 (in Chinese)[施明达 1992 火炸药学报 69 24]
[6] [7] Wang L J, Zgierski M Z 2004 J. Phys. Chem. A 108 4679
[8] Gordienko A B, Zhuravlev Y N, Poplavnoi A S 2006 Phys. Stat. Sol. B 198 707
[9] [10] Christe K O, Ralf H 2004 Angew. Chem. Int. Ed. 43 3148
[11] [12] Christe K O, Wilson W W, Sheehy J A, Boatz J A 1999 Angew. Chem. Int. Ed. 38 2004
[13] [14] Vij A, Wilsom W W, Vij V, Tham F S, Sheehy J A, Christe K O 2001 J. Am. Chem. Soc. 123 6308
[15] [16] Ju X H, Ji G F, Xiao H M 2002 Chin. Sci. Bull. 47 265 (in Chinese)[居学海、姬广富、肖鹤鸣 2002科学通报 47 265]
[17] [18] Duan H X, Li Q S 2005 J. Mol. Sci. 21 56 (in Chinese)[段红霞、李前树 2005 分子科学学报 21 56]
[19] [20] [21] Xia Q Y,Xiao H M, Ju X H 2005 Chem. J. Chin. Univ. 26 922 (in Chinese)[夏其英、肖鹤鸣、居学海 2005 高等学校化学学报 26 922]
[22] [23] Shao J X, Cheng X L, Yang X D 2007 J. Sichuan Norm. Univ. 30 78 (in Chinese)[邵菊香、程新路、杨向东 2007 四川师范大学学报 30 78]
[24] Chen Y H, Ren B X, Cao Y J 2010 Acta Chim. Sin. 68 1793 (in Chinese)[陈玉红、任宝兴、曹一杰 2010 化学学报 68 1793]
[25] [26] [27] Ren B X,Chen Y H, Cao Y J 2010 J. Inorg. Chem. 26 1 (in Chinese)[任宝兴、陈玉红、曹一杰 2010 无机化学学报 26 1]
[28] Xia Q Y, Xiao H M, Ju X H 2004 J. Phys. Chem. 108 2780
[29] [30] [31] Xia Q Y, Xiao H M, Ju X H 2004 Int. J. Quantum Chem. 100 301
[32] [33] Chen H, Lei X L, Liu L R, Zhu H J 2009 Acta Phys. Sin. 58 5355 (in Chinese)[陈 杭、雷雪玲、刘立仁、祝恒江 2009 物理学报 58 5355]
[34] Gu J, Wang S Y, Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)[顾 娟、王山鹰、苟秉聪 2009 物理学报 58 3338]
[35] [36] [37] Snyder J A, Stevens E D 1999 Chem. Phys. Lett. 313 293
[38] [39] Gao P, Xiao H M, Huang Y S 1998 J. Mol. Sci. 14 188 (in Chinese)[高 贫、肖鹤鸣、黄寅生 1998 分子科学学报 14 188]
[40] Stark J G,Wallace H G 1982 Chemistry Data Book (London: John Murray) p50
[41] [42] [43] Veszpremi T, Pasinszki T, Feher M J 1994 Am. Chem. Soc. 1166 303
[44] [45] Sheinker I M, Syrkin I A K 1950 Lzv. Akad. Nauk. SSSR Ser. Fiz. 14 478
[46] Lieber E, Levering D R, Patterson L 1951 Anal. Chem. 23 1594
[47] -
[1] Ludovic C, Imane S, Gilles D, Daniel B 2004 Tetrahedron Lett. 60 2079
[2] [3] Veronique B, Imane S, Daniel B, Raoul U 1997 Tetrahedron Lett. 38 7733
[4] [5] Shi M D 1992 Chin. J. Expl. Prop. 69 24 (in Chinese)[施明达 1992 火炸药学报 69 24]
[6] [7] Wang L J, Zgierski M Z 2004 J. Phys. Chem. A 108 4679
[8] Gordienko A B, Zhuravlev Y N, Poplavnoi A S 2006 Phys. Stat. Sol. B 198 707
[9] [10] Christe K O, Ralf H 2004 Angew. Chem. Int. Ed. 43 3148
[11] [12] Christe K O, Wilson W W, Sheehy J A, Boatz J A 1999 Angew. Chem. Int. Ed. 38 2004
[13] [14] Vij A, Wilsom W W, Vij V, Tham F S, Sheehy J A, Christe K O 2001 J. Am. Chem. Soc. 123 6308
[15] [16] Ju X H, Ji G F, Xiao H M 2002 Chin. Sci. Bull. 47 265 (in Chinese)[居学海、姬广富、肖鹤鸣 2002科学通报 47 265]
[17] [18] Duan H X, Li Q S 2005 J. Mol. Sci. 21 56 (in Chinese)[段红霞、李前树 2005 分子科学学报 21 56]
[19] [20] [21] Xia Q Y,Xiao H M, Ju X H 2005 Chem. J. Chin. Univ. 26 922 (in Chinese)[夏其英、肖鹤鸣、居学海 2005 高等学校化学学报 26 922]
[22] [23] Shao J X, Cheng X L, Yang X D 2007 J. Sichuan Norm. Univ. 30 78 (in Chinese)[邵菊香、程新路、杨向东 2007 四川师范大学学报 30 78]
[24] Chen Y H, Ren B X, Cao Y J 2010 Acta Chim. Sin. 68 1793 (in Chinese)[陈玉红、任宝兴、曹一杰 2010 化学学报 68 1793]
[25] [26] [27] Ren B X,Chen Y H, Cao Y J 2010 J. Inorg. Chem. 26 1 (in Chinese)[任宝兴、陈玉红、曹一杰 2010 无机化学学报 26 1]
[28] Xia Q Y, Xiao H M, Ju X H 2004 J. Phys. Chem. 108 2780
[29] [30] [31] Xia Q Y, Xiao H M, Ju X H 2004 Int. J. Quantum Chem. 100 301
[32] [33] Chen H, Lei X L, Liu L R, Zhu H J 2009 Acta Phys. Sin. 58 5355 (in Chinese)[陈 杭、雷雪玲、刘立仁、祝恒江 2009 物理学报 58 5355]
[34] Gu J, Wang S Y, Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)[顾 娟、王山鹰、苟秉聪 2009 物理学报 58 3338]
[35] [36] [37] Snyder J A, Stevens E D 1999 Chem. Phys. Lett. 313 293
[38] [39] Gao P, Xiao H M, Huang Y S 1998 J. Mol. Sci. 14 188 (in Chinese)[高 贫、肖鹤鸣、黄寅生 1998 分子科学学报 14 188]
[40] Stark J G,Wallace H G 1982 Chemistry Data Book (London: John Murray) p50
[41] [42] [43] Veszpremi T, Pasinszki T, Feher M J 1994 Am. Chem. Soc. 1166 303
[44] [45] Sheinker I M, Syrkin I A K 1950 Lzv. Akad. Nauk. SSSR Ser. Fiz. 14 478
[46] Lieber E, Levering D R, Patterson L 1951 Anal. Chem. 23 1594
[47]
Catalog
Metrics
- Abstract views: 14743
- PDF Downloads: 625
- Cited By: 0