-
In general, more attention is paid to how to improve the characteristic parameters of plasma in plasma applications. However, in some cases, it is necessary to produce plasma with low-electron density, such as in the laboratory simulation of ionospheric plasma in space science. In this study, a low-density plasma is generated by electron beams passing through a silicon nitride transmission window under low pressure condition. The transmission properties of electron beam passing through silicon nitride films are investigated by Monte Carlo simulation, and the plasma feature is studied by a planar Langmuir probe and a digital camera. It is found that the plasma exhibits a conical structure with its apex located at the transmission window. At a constant pressure, the cone angle of conical plasma decreases with the electron energy increasing. This is qualitatively consistent with the Monte Carlo simulation result. The frequency of electron-neutral collisions increases as the working pressure rising, which leads the plasma cone angle to increase. When the beam current is reduced from 10 μA to 0.5 μA at 40 keV, the electron density decreases, in a range between 105 and 106 cm–3, while the electron temperature does not change significantly but approaches 1 eV. It can be inferred that the electron density decreases with the distance z from the transmission window in the incident direction of the electron beam. A low-density plasma of less than 105 cm–3 can be obtained further away from the transmission window.
-
Keywords:
- electron beam /
- plasma generation /
- plasma source /
- electron density
[1] Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825Google Scholar
[2] Wang L, Cui L, Zhu X D, Wen X H 2007 Phys. Plasmas 14 123501Google Scholar
[3] Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236Google Scholar
[4] Fang H K, Oyama K I, Chen A B 2017 Plasma Sources Sci. Technol. 26 115010Google Scholar
[5] Pigache D R 1973 AIAA J. 11 129Google Scholar
[6] Stone N H, Rehmann W K 1970 The Simulation of Ionospheric Conditions for Space Vehicles TN D-5894 NASA
[7] Kelley M 2009 The Earth’s Ionosphere (2nd Ed.) (Amsterdam: Elsevier
[8] Morozov A, Heindl T, Skrobol C, Wieser J, Krücken R, Ulrich A, 2008 Eur. Phys. J. D 48 383Google Scholar
[9] Masoud N, Martus K, Murnick D 2019 Plasma Sources Sci. Technol. 28 045010Google Scholar
[10] Zhu B L, Yan S Q, Chen Y, Zhu X D 2022 Plasma Sources Sci. Technol. 31 025012Google Scholar
[11] Pei X K, Zhang P, Chen K, Lu X P 2013 IEEE Trans. Plasma Sci. 41 494Google Scholar
[12] Yan S Q, Chen Y, Ma Y, Gao J K, Zhu X D 2023 Phys. Plasmas 30 073504Google Scholar
[13] Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487Google Scholar
[14] Zhu B L, Ma Y, Yan S Q, Ke W, Yang K, Zhu X D 2020 J. Appl. Phys. 128 135302Google Scholar
[15] 蒲其荣, 丁泽军, 孙霞, 吴自勤 2004 电子显微学报 23 571Google Scholar
Pu Q R, Ding Z J, Sun X, Wu Z Q 2004 J. Chin. Electr. Microsc. Soc. 23 571Google Scholar
[16] Seltzer S M, Berger M J 1982 Int. J. Appl. Radiat. Isot. 33 1189Google Scholar
[17] Hoang H, Røed K, Bekkeng T A, Moen J I, Spicher A, Clausen L B N, Miloch W J, Trondsen E, Pedersen A 2018 Meas. Sci. Technol. 29 065906Google Scholar
[18] Morozov A, Krücken R, Ulrich A, Wieser J 2006 J. Appl. Phys. 100 093305Google Scholar
[19] Walton S G, Boris D R, Hernández S C, Lock E H, Petrova Tz B, Petrov G M, Fernsler R F 2015 ECS J. Solid State Sci. Technol. 4 N5033Google Scholar
[20] Cohn A, Caledonia G 1970 J. Appl. Phys. 41 3767Google Scholar
[21] Soloviev V, Konchakov A, Krivstov V, Malmuth N 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, CA, U. S. A. June 2001 AIAA 2001–3089
[22] Bai X Y, Chen C, Li H, Liu W D, Chen W 2017 Phys. Plasmas 24 103509Google Scholar
-
图 2 氮气等离子体放电图像, 电子束的束流为 5 μA, 横列表示不同气压, 纵列表示不同电子束能量
Figure 2. Photos of nitrogen plasma taken by CCD digital camera. The electron beam current is controlled at 5 μA. Each column shows the change of plasma shape with electron energy when the gas pressure is fixed, and each row gives the plasma shapes at different pressures under constant electron energy.
图 5 静电探针的测量结果 (a) 3个束流下典型的探针I-V曲线; (b) 电子密度随束流的变化; (c) 电子温度随束流的变化; 电子束能量为40 keV, 工作气压为100 Pa
Figure 5. The results of the langmuir probe measurement: (a) Typical I-V curves under different beam currents; (b) the electron density variation with beam currents; (c) the electron temperature variation with beam currents. The energy of the electron beam is 40 keV, and the working pressure is 100 Pa.
-
[1] Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825Google Scholar
[2] Wang L, Cui L, Zhu X D, Wen X H 2007 Phys. Plasmas 14 123501Google Scholar
[3] Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236Google Scholar
[4] Fang H K, Oyama K I, Chen A B 2017 Plasma Sources Sci. Technol. 26 115010Google Scholar
[5] Pigache D R 1973 AIAA J. 11 129Google Scholar
[6] Stone N H, Rehmann W K 1970 The Simulation of Ionospheric Conditions for Space Vehicles TN D-5894 NASA
[7] Kelley M 2009 The Earth’s Ionosphere (2nd Ed.) (Amsterdam: Elsevier
[8] Morozov A, Heindl T, Skrobol C, Wieser J, Krücken R, Ulrich A, 2008 Eur. Phys. J. D 48 383Google Scholar
[9] Masoud N, Martus K, Murnick D 2019 Plasma Sources Sci. Technol. 28 045010Google Scholar
[10] Zhu B L, Yan S Q, Chen Y, Zhu X D 2022 Plasma Sources Sci. Technol. 31 025012Google Scholar
[11] Pei X K, Zhang P, Chen K, Lu X P 2013 IEEE Trans. Plasma Sci. 41 494Google Scholar
[12] Yan S Q, Chen Y, Ma Y, Gao J K, Zhu X D 2023 Phys. Plasmas 30 073504Google Scholar
[13] Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487Google Scholar
[14] Zhu B L, Ma Y, Yan S Q, Ke W, Yang K, Zhu X D 2020 J. Appl. Phys. 128 135302Google Scholar
[15] 蒲其荣, 丁泽军, 孙霞, 吴自勤 2004 电子显微学报 23 571Google Scholar
Pu Q R, Ding Z J, Sun X, Wu Z Q 2004 J. Chin. Electr. Microsc. Soc. 23 571Google Scholar
[16] Seltzer S M, Berger M J 1982 Int. J. Appl. Radiat. Isot. 33 1189Google Scholar
[17] Hoang H, Røed K, Bekkeng T A, Moen J I, Spicher A, Clausen L B N, Miloch W J, Trondsen E, Pedersen A 2018 Meas. Sci. Technol. 29 065906Google Scholar
[18] Morozov A, Krücken R, Ulrich A, Wieser J 2006 J. Appl. Phys. 100 093305Google Scholar
[19] Walton S G, Boris D R, Hernández S C, Lock E H, Petrova Tz B, Petrov G M, Fernsler R F 2015 ECS J. Solid State Sci. Technol. 4 N5033Google Scholar
[20] Cohn A, Caledonia G 1970 J. Appl. Phys. 41 3767Google Scholar
[21] Soloviev V, Konchakov A, Krivstov V, Malmuth N 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, CA, U. S. A. June 2001 AIAA 2001–3089
[22] Bai X Y, Chen C, Li H, Liu W D, Chen W 2017 Phys. Plasmas 24 103509Google Scholar
Catalog
Metrics
- Abstract views: 1694
- PDF Downloads: 38
- Cited By: 0