Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature and electron density in femtosecond filament-induced Cu plasma

Yang Da-Peng Li Su-Yu Jiang Yuan-Fei Chen An-Min Jin Ming-Xing

Citation:

Temperature and electron density in femtosecond filament-induced Cu plasma

Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Laser-induced breakdown spectroscopy (LIBS), which is also known as laser-induced plasma spectroscopy (LIPS), is a very promising spectral analysis technique for detecting elemental composition. The possibility of remote operation of LIBS is one of the properties, which expands the application scope of this technique. The remote LIBS technique is based on a long-range lens. With the increase of focusing distance, it is difficult to tightly focus laser pulse due to the diffraction limits. The size of focusing spot increases with focusing distance increasing. This will require extremely high laser energy. Femtosecond laser filamentation due to optical Kerr effect can be applied to the remote LIBS. During the filament propagation, the waist of laser beam is close to a constant value. The laser intensity inside the filament is about 1013 W/cm2 (intensity clamping). The intensity is sufficient to ablate sample and produce the plasma. It can overcome the influence of the diffraction limit in nanosecond LIBS. Although many researchers have studied the femtosecond geometrical focusing and femtosecond filamentation LIBSs, the spectral characteristics have not been completely understood. In this paper, we study the femtosecond laser filament-induced Cu plasma spectroscopy. Femtosecond laser system is an ultrafast Ti:sapphire amplifier (Coherent Libra). The full-width at the half maximum is 50 fs at a wavelength of 800 nm with a repetition rate of 1 kHz and its output energy is 3.5 mJ. A quartz lens with a focal length of 1 m is used to focus the laser to generate a filament channel. The spectral intensity of produced Cu plasma along the filament channel is measured by using the optical emission spectroscopy, and the distribution of Cu(I) intensity versus the distance between sample and focused lens is obtained. The results indicate that in a longer distance range along the filament, plasma spectroscopy has stronger emission due to the intensity clamping effect in femtosecond laser filamentation. In addition, we also calculate the plasma temperature and electron density by using the Boltzmann plot and the Stark broadening. The plasma temperature and electron density along the filament channel can be divided into three main regions: region 1) from 950 mm to 970 mm, in which the plasma temperature and electron density increase with the increase of distance; region 2) from 970 mm to 1030 mm, in which the change of plasma excitation temperature is opposite to the change of electron density; region 3) from 1030 mm to 1050 mm, in which the plasma temperature and electron density decrease with the increase of distance.
      Corresponding author: Chen An-Min, amchen@jlu.edu.cn ; Jin Ming-Xing, mxjin@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674128, 11474129, 11504129), the Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC), and the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (Grant No. 2016[400]).
    [1]

    Miziolek A W, Palleschi V, Schechter I 1997 Crit. Rev. Anal. Chem. 27 257

    [2]

    Winefordner J D, Gornushkin I B, Correll T, Gibb E, Smith B W, Omenetto N 2004 J. Anal. Atom. Spectrom. 19 1061

    [3]

    Lu C P, Liu W Q, Zhao N J, Liu L T, Chen D, Zhang Y J, Liu J G 2011 Acta Phys. Sin. 60 045206 (in Chinese) [鲁翠萍, 刘文清, 赵南京, 刘力拓, 陈东, 张玉钧, 刘建国 2011 物理学报 60 045206]

    [4]

    Fortes F J, Moros J, Lucena P, Cabalín L M, Laserna J J 2013 Anal. Chem. 85 640

    [5]

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206 (in Chinese) [吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206]

    [6]

    Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Méjean G, Salmon E, Kasparianb J, Yub J, Wolf J P 2005 Spectrochim. Acta B 60 1025

    [7]

    Xu H L, Bernhardt J, Mathieu P, Roy G, Chin S L 2007 J. Appl. Phys. 101 033124

    [8]

    Li S Y, Guo F M, Song Y, Chen A M, Yang Y J, Jin M X 2014 Phys. Rev. A 89 3732

    [9]

    Chin S L 2010 Femtosecond Laser Filamentation (New York: Springer)

    [10]

    Durand M, Houard A, Prade B, Mysyrowicz A, Durecu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K 2013 Opt. Express 21 26836

    [11]

    Xu S, Bernhardt J, Sharifi M, Liu W, Chin S L 2012 Laser Phys. 22 195

    [12]

    Xu S, Zheng Y, Liu Y, Liu W 2010 Laser Phys. 20 1968

    [13]

    Harilal S S, Yeak J, Brumfield B E, Phillips M C 2016 Opt. Express 24 17941

    [14]

    Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J P, Woste L 2004 Appl. Phys. Lett. 85 3977

    [15]

    Gao X, Du C, Li C, Liu L, Song C, Hao Z Q, Lin J Q 2014 Acta Phys. Sin. 63 095203 (in Chinese) [高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全 2014 物理学报 63 095203]

    [16]

    Zhang Y W, Gao X, Zhang Y, Song C, Lin J Q 2015 Acta Phys. Sin. 64 175203 (in Chinese) [张亚维, 高勋, 张原, 宋超, 林景全 2015 物理学报 64 175203]

    [17]

    Labutin T A, Lednev V N, Ilyin A A, Popov A M 2015 J. Anal. Atom. Spectrom. 30 90

    [18]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301

    [19]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497

    [20]

    Wiese W L, Fuhr J R, Lesage A, Konjevic, N 2002 J. Phys. Chem. Ref. Data 31 819

    [21]

    Fu N, Xu D G, Zhang G Z, Yao J Q 2015 Chin. J. Lasers 42 0202003 (in Chinese) [付宁, 徐德刚, 张贵忠, 姚建铨 2015 中国激光 42 0202003]

  • [1]

    Miziolek A W, Palleschi V, Schechter I 1997 Crit. Rev. Anal. Chem. 27 257

    [2]

    Winefordner J D, Gornushkin I B, Correll T, Gibb E, Smith B W, Omenetto N 2004 J. Anal. Atom. Spectrom. 19 1061

    [3]

    Lu C P, Liu W Q, Zhao N J, Liu L T, Chen D, Zhang Y J, Liu J G 2011 Acta Phys. Sin. 60 045206 (in Chinese) [鲁翠萍, 刘文清, 赵南京, 刘力拓, 陈东, 张玉钧, 刘建国 2011 物理学报 60 045206]

    [4]

    Fortes F J, Moros J, Lucena P, Cabalín L M, Laserna J J 2013 Anal. Chem. 85 640

    [5]

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206 (in Chinese) [吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206]

    [6]

    Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Méjean G, Salmon E, Kasparianb J, Yub J, Wolf J P 2005 Spectrochim. Acta B 60 1025

    [7]

    Xu H L, Bernhardt J, Mathieu P, Roy G, Chin S L 2007 J. Appl. Phys. 101 033124

    [8]

    Li S Y, Guo F M, Song Y, Chen A M, Yang Y J, Jin M X 2014 Phys. Rev. A 89 3732

    [9]

    Chin S L 2010 Femtosecond Laser Filamentation (New York: Springer)

    [10]

    Durand M, Houard A, Prade B, Mysyrowicz A, Durecu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K 2013 Opt. Express 21 26836

    [11]

    Xu S, Bernhardt J, Sharifi M, Liu W, Chin S L 2012 Laser Phys. 22 195

    [12]

    Xu S, Zheng Y, Liu Y, Liu W 2010 Laser Phys. 20 1968

    [13]

    Harilal S S, Yeak J, Brumfield B E, Phillips M C 2016 Opt. Express 24 17941

    [14]

    Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J P, Woste L 2004 Appl. Phys. Lett. 85 3977

    [15]

    Gao X, Du C, Li C, Liu L, Song C, Hao Z Q, Lin J Q 2014 Acta Phys. Sin. 63 095203 (in Chinese) [高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全 2014 物理学报 63 095203]

    [16]

    Zhang Y W, Gao X, Zhang Y, Song C, Lin J Q 2015 Acta Phys. Sin. 64 175203 (in Chinese) [张亚维, 高勋, 张原, 宋超, 林景全 2015 物理学报 64 175203]

    [17]

    Labutin T A, Lednev V N, Ilyin A A, Popov A M 2015 J. Anal. Atom. Spectrom. 30 90

    [18]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301

    [19]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497

    [20]

    Wiese W L, Fuhr J R, Lesage A, Konjevic, N 2002 J. Phys. Chem. Ref. Data 31 819

    [21]

    Fu N, Xu D G, Zhang G Z, Yao J Q 2015 Chin. J. Lasers 42 0202003 (in Chinese) [付宁, 徐德刚, 张贵忠, 姚建铨 2015 中国激光 42 0202003]

  • [1] Hou Jia-Jia, Zhang Da-Cheng, Feng Zhong-Qi, Zhu Jiang-Feng. Quantitative analysis method of laser-induced breakdown spectroscopy based on temperature iterative correction of self-absorption effect. Acta Physica Sinica, 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] Zhang Yun, Lin Shuang, Zhang Yun-Feng, Zhang He, Chang Ming-Ying, Yu Miao, Wang Ya-Qiu, Cai Xiao-Ming, Jiang Yuan-Fei, Chen An-Min, Li Su-Yu, Jin Ming-Xing. Spatial distribution of nitrogen fluorescence emission induced by femtosecond laser filamentation in air. Acta Physica Sinica, 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [3] Fu Li-Li, Chang Jun-Wei, Chen Jia-Qi, Zhang Lan-Zhi, Hao Zuo-Qiang. Filamentation and supercontinuum emission generated from flattened femtosecond laser beam by use of axicon in fused silica. Acta Physica Sinica, 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [4] Chang Jun-Wei, Zhu Rui-Han, Zhang Lan-Zhi, Xi Ting-Ting, Hao Zuo-Qiang. Control of supercontinuum generation from filamentation of shaped femtosecond laser pulses. Acta Physica Sinica, 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [5] Yang Xue, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Influence of distance between focusing lens and sample surface on laser-induced breakdown spectroscopy of brass at different sample temperatures. Acta Physica Sinica, 2019, 68(6): 065201. doi: 10.7498/aps.68.20182198
    [6] Zhao Fa-Gang, Zhang Yu, Zhang Lei, Yin Wang-Bao, Dong Lei, Ma Wei-Guang, Xiao Lian-Tuan, Jia Suo-Tang. Laser-induced plasma characterization using self-absorption quantification method. Acta Physica Sinica, 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [7] Wang Hao-Ruo, Zhang Chong, Zhang Hong-Chao, Shen Zhong-Hua, Ni Xiao-Wu, Lu Jian. Spatiotemporal distributions of plasma and optical field during the interaction between ultra-short laser pulses and water nanodroplets. Acta Physica Sinica, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [8] Yang Wen-Bin, Zhou Jiang-Ning, Li Bin-Cheng, Xing Ting-Wen. Time-resolved spectra and measurements of temperature and electron density of laser induced nitrogen plasma. Acta Physica Sinica, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [9] Liu Yu-Feng, Zhang Lian-Shui, He Wan-Lin, Huang Yu, Du Yan-Jun, Lan Li-Juan, Ding Yan-Jun, Peng Zhi-Min. Spectroscopic study on the laser-induced breakdown flame plasma. Acta Physica Sinica, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [10] Zhang Ying, Zhang Da-Cheng, Ma Xin-Wen, Pan Dong, Zhao Dong-Mei. Quantitative analysis of chromium in edible gelatin by using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [11] Chen Tian-Bing, Yao Ming-Yin, Liu Mu-Hua, Lin Yong-Zeng, Li Wen-Bing, Zheng Mei-Lan, Zhou Hua-Mao. Quantitative analysis of laser induced breakdown spectroscopy of Pb in navel orange based on multivariate calibration. Acta Physica Sinica, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [12] Gao Xun, Du Chuang, Li Cheng, Liu Lu, Song Chao, Hao Zuo-Qiang, Lin Jing-Quan. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy. Acta Physica Sinica, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [13] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [14] Wang Chun-Long, Liu Jian-Guo, Zhao Nan-Jing, Ma Ming-Jun, Wang Yin, Hu Li, Zhang Da-Hai, Yu Yang, Meng De-Shuo, Zhang Wei, Liu Jing, Zhang Yu-Jun, Liu Wen-Qing. Comparative analysis of quantitative method on heavy metal detection in water with laser-induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [15] Lu Cui-Ping, Liu Wen-Qing, Zhao Nan-Jing, Liu Li-Tuo, Chen Dong, Zhang Yu-Jun, Liu Jian-Guo. Quantitative analysis of chrome in soil samples usinglaser-induced breakdown spectroscopy. Acta Physica Sinica, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [16] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [17] Sun Dui-Xiong, Su Mao-Gen, Dong Chen-Zhong, Wang Xiang-Li, Zhang Da-Cheng, Ma Xin-Wen. Quantitative analysis of element concentration in Al alloy by using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [18] Zhang Da-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Li Bin, Zu Kai-Ling. Application of laser-induced breakdown spectroscopy in analyzing microelements in three kinds of fruit samples. Acta Physica Sinica, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [19] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
Metrics
  • Abstract views:  6429
  • PDF Downloads:  300
  • Cited By: 0
Publishing process
  • Received Date:  22 February 2017
  • Accepted Date:  05 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回