Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of distance between focusing lens and sample surface on laser-induced breakdown spectroscopy of brass at different sample temperatures

Yang Xue Li Su-Yu Jiang Yuan-Fei Chen An-Min Jin Ming-Xing

Citation:

Influence of distance between focusing lens and sample surface on laser-induced breakdown spectroscopy of brass at different sample temperatures

Yang Xue, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing
PDF
HTML
Get Citation
  • From previously published results of laser-induced breakdown spectroscopy, one can know that the change in the distance from the sample surface to the focusing lens has an important influence on the interaction between the sample and the laser, and increasing the sample temperature can enhance the coupling between the laser and the sample. However, almost no work has devoted to directly studying the influence of the distance between focusing lens and sample surface on the spectral intensity of laser-induced breakdown spectroscopy under different sample temperatures. In this paper, we investigate experimentally this subject. An Nd:YAG laser is used to excite the sample to produce the plasma. The detected spectral lines are Cu (I) 510.55 nm, Cu (I) 515.32 nm, and Cu (I) 521.82 nm. The focal length of focusing lens is 200 mm. The distance between focusing lens and sample surface ranges from 170 mm to 200 mm. The sample is heated from 25 ℃ to 270 ℃, and the laser energy is 26 mJ. In general, the spectral intensity of laser-induced breakdown spectroscopy can be effectively enhanced by increasing the sample temperature. At the sample temperatures of 25 ℃ and 100 ℃, the spectral intensity increases monotonically with the increase of the distance between focusing lens and sample surface; at higher sample temperatures (150, 200, 250, and 270 ℃), the spectral intensity first increases and then decreases with the increase of the distance between focusing lens and sample surface. In addition, near the focal point, with the increase of sample temperature, the increase of the spectral intensity is not obvious, and the spectral intensity decreases with the increase of sample temperature, which is particularly noteworthy in improving the spectral intensity of laser-induced breakdown spectroscopy by increasing sample temperature. In order to further understand the influences of these two conditions on laser-induced breakdown spectroscopy, we also calculate the plasma temperature and electron density, and find that the variation of plasma temperature and electron density are almost the same as that of spectral intensity. The plasma temperature and electron density at higher sample temperature are higher.
      Corresponding author: Chen An-Min, amchen@jlu.edu.cn ; Jin Ming-Xing, mxjin@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674128, 11674124) and the Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC).
    [1]

    Wang Z, Dong F, Zhou W 2015 Plasma Sci. Technol. 17 617Google Scholar

    [2]

    Wang Z, Ting B, Yuan, Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [3]

    Wang Z Z, Deguchi Y, Zhang Z Z, Wang Z, Zeng X Y, Yan J J 2016 Front. Phys. 11 114213Google Scholar

    [4]

    朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫 2015 物理学报 64 024212Google Scholar

    Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M, Li K H, Li X Y, Liu J G, Zeng X Y, Lu Y F 2015 Acta Phys. Sin. 64 024212Google Scholar

    [5]

    Wang Q Q, Liu K, Zhao H, Ge C H, Huang Z W 2012 Front. Phys. 7 701Google Scholar

    [6]

    Hu L, Zhao N, Liu W, Meng D, Fang L, Wang Y, Yu Y, Ma M 2015 Plasma Sci. Technol. 17 699Google Scholar

    [7]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497Google Scholar

    [8]

    Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X 2018 Appl. Spectrosc. Rev. 53 1Google Scholar

    [9]

    Li X, Wang Z, Fu Y, Li Z, Ni W 2015 Plasma Sci. Technol. 17 621Google Scholar

    [10]

    Wang X, Chen A, Sui L, Wang Y, Zhang D, Li S, Jiang Y, Jin M 2018 J. Anal. Atom. Spectrom. 33 168Google Scholar

    [11]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [12]

    Lu Y, Zhou Y S, Qiu W, Huang X, Liu L, Jiang L, Silvain J F, Lu Y F 2015 J. Anal. Atom. Spectrom. 30 2303Google Scholar

    [13]

    李百慧, 高勋, 宋超, 林景全 2016 物理学报 65 235201Google Scholar

    Li B H, Gao X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar

    [14]

    Li C M, Guo L B, He X N, Hao Z Q, Li X Y, Shen M, Zeng X Y, Lu Y F 2014 J. Anal. Atom. Spectrom. 29 638Google Scholar

    [15]

    Wang Q, Chen A, Zhang D, Wang Y, Sui L, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 073301Google Scholar

    [16]

    Zhou W, Su X, Qian H, Li K, Li X, Yu Y, Ren Z 2013 J. Anal. Atom. Spectrom. 28 702Google Scholar

    [17]

    Liu L, Huang X, Li S, Lu Y, Chen K, Jiang L, Silvain J F, Lu Y F 2015 Opt. Express 23 15047Google Scholar

    [18]

    de Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, de Pascale O 2013 Anal. Chem. 85 10180Google Scholar

    [19]

    Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y, Zeng X 2016 Opt. Express 24 7850Google Scholar

    [20]

    Tavassoli S H, Gragossian A 2009 Opt. Laser Technol. 41 481Google Scholar

    [21]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Appl. Phys. B 108 867Google Scholar

    [22]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40Google Scholar

    [23]

    Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M, Saghafifar H 2014 J. Eur. Opt. Soc.-Rapid 9 14058Google Scholar

    [24]

    Hanson C, Phongikaroon S, Scott J R 2014 Spectrochim. Acta B 97 79Google Scholar

    [25]

    Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S, Jin M 2017 Phys. Plasmas 24 013301Google Scholar

    [26]

    Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J, Pedarnig J D 2013 Spectrochim. Acta B 87 36Google Scholar

    [27]

    Liu Y, Tong Y, Li S, Wang Y, Chen A, Jin M 2016 Chin. Opt. Lett. 14 123001Google Scholar

    [28]

    Liu Y, Tong Y, Wang Y, Zhang D, Li S, Jiang Y, Chen A, Jin M 2017 Plasma Sci. Technol. 19 125501Google Scholar

    [29]

    Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 083305Google Scholar

    [30]

    Multari R A, Foster L E, Cremers D A, Ferris M J 1996 Appl. Spectrosc. 50 1483Google Scholar

    [31]

    Aguilera J A, Aragón C 2008 Spectrochim. Acta B 63 793Google Scholar

    [32]

    Chen M, Liu Y H, Liu X D, Zhao M W 2012 Laser Phys. Lett. 9 730Google Scholar

    [33]

    Kasperczuk A, Pisarczyk T, Kalal M, Ullschmied J, Krousky E, Masek K, Pfeifer M, Rohlena K, Skala J, Pisarczyk P 2009 Appl. Phys. Lett. 94 081501Google Scholar

    [34]

    Guo J, Shao J, Wang T, Zheng C, Chen A, Jin M 2017 J. Anal. Atom. Spectrom. 32 367Google Scholar

    [35]

    Zhang D, Chen A, Wang X, Wang Y, Sui L, Ke D, Li S, Jiang Y, Jin M 2018 Spectrochim. Acta B 143 71Google Scholar

    [36]

    刘月华, 陈明, 刘向东, 崔清强, 赵明文 2013 物理学报 62 025203Google Scholar

    Liu Y H, Chen M, Liu X D, Cui Q Q, Zhao M W 2013 Acta Phys. Sin. 62 025203Google Scholar

    [37]

    Li X, Wei W, Wu J, Jia S, Qiu A 2013 J. Appl. Phys. 113 243304Google Scholar

    [38]

    Amin S, Bashir S, Anjum S, Akram M, Hayat A, Waheed S, Iftikhar H, Dawood A, Mahmood K 2017 Phys. Plasmas 24 083112Google Scholar

    [39]

    Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 033302Google Scholar

    [40]

    Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R 2017 Appl. Phys. Express 10 072401Google Scholar

    [41]

    Wang Y, Chen A, Li S, Ke D, Wang X, Zhang D, Jiang Y, Jin M 2017 AIP Adv. 7 095204Google Scholar

    [42]

    Haq S U, Ahmat L, Mumtaz M, Shakeel H, Mahmood S, Nadeem A 2015 Phys. Plasmas 22 083504Google Scholar

    [43]

    Guo J, Wang T, Shao J, Chen A, Jin M 2018 J. Anal. Atom. Spectrom. 33 2116Google Scholar

    [44]

    Thorstensen J, Foss S E 2012 J. Appl. Phys. 112 103514Google Scholar

    [45]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [46]

    杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 物理学报 66 115201Google Scholar

    Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201Google Scholar

    [47]

    Wang Q, Chen A, Wang Y, Sui L, Li S, Jin M 2018 J. Anal. Atom. Spectrom. 33 1154Google Scholar

    [48]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301Google Scholar

    [49]

    NIST Atomic Spectra Database http://physics.nist.gov/PhysRefData/ASD/lines_form.html

    [50]

    Wang J, Fu H, Ni Z, Chen X, He W, Dong F 2015 Plasma Sci. Technol. 17 649Google Scholar

    [51]

    Konjević N, Wiese W 1990 J. Phys. Chem. Ref. Data 19 1307Google Scholar

  • 图 1  不同样品温度下聚焦透镜到样品表面距离对LIBS影响的实验装置示意图

    Figure 1.  Experimental setup for the influence of the distance between focusing lens and sample surface on LIBS under different sample temperatures.

    图 2  不同温度下LIBS辐射强度的比较, 其中图(b)来自于图(a), 聚焦透镜到样品表面的距离为190 mm、激光能量为26 mJ

    Figure 2.  Comparison of spectral lines of LIBS under different sample temperatures. Panel (b) is from panel (a). The distance between focusing lens and sample surface is 190 mm. Laser energy is 26 mJ.

    图 3  不同温度下等离子体光谱随着波长和聚焦透镜到样品表面距离的分布(激光能量为26 mJ) (a)样品温度为100 ℃; (b) 样品温度为200 ℃

    Figure 3.  Distribution of optical emission with the wavelength and the distance between focusing lens and sample surface under 100 ℃ (a) and 200 ℃ (b) sample temperatures. Laser energy is 26 mJ.

    图 4  不同样品温度下Cu (I) 510.55 nm (a)和Cu (I) 521.82 nm (b)光谱峰强度随着聚焦透镜到样品表面距离的变化(激光能量为26 mJ)

    Figure 4.  Evolution of spectral peak intensities at Cu (I) 510.55 nm (a) and Cu (I) 521.82 nm (b) with the distance between focusing lens and sample surface under different sample temperatures. Laser energy is 26 mJ.

    图 5  典型的Boltzmann图, 其中聚焦透镜到样品表面的距离分别为(a) 175, (b) 180, (c) 185和(d) 195 mm; 样品温度为200 ℃

    Figure 5.  Typical Boltzmann plots. The distances between focusing lens and sample surface are (a) 175, (b) 180, (c) 185 and (d) 195 mm. Sample temperature is 200 ℃.

    图 6  不同样品温度下等离子体温度随着聚焦透镜到样品表面距离的变化(激光能量为26 mJ)

    Figure 6.  Evolution of plasma temperature with the distance between focusing lens and sample surface under different sample temperatures. Laser energy is 26 mJ.

    图 7  典型的谱线半高宽($\scriptstyle{\text{Δ}}{\lambda _{{\rm{measured}}}}$)拟合图, 其中聚焦透镜到样品表面的距离分别为(a) 175, (b) 180, (c) 185和(d) 195 mm; 样品温度为200 ℃

    Figure 7.  Typical Gauss fitting ($\scriptstyle{\text{Δ}}{\lambda _{{\rm{measured}}}}$) for selected distances between focusing lens and sample surface under 200 ℃ sample temperature. The distances are (a) 175, (b) 180, (c) 185 and 195 mm (d).

    图 8  不同样品温度下电子密度随着聚焦透镜到样品表面距离的变化(激光能量为26 mJ)

    Figure 8.  Evolution of electron density with the distance between focusing lens and sample surface under different sample temperatures. Laser energy is 26 mJ.

    表 1  用于计算等离子体温度的光谱线参数表

    Table 1.  Spectral parameters of Cu (I) for calculating plasma temperature.

    波长/nmEk/eVgA/108 s–1
    510.553.81760.020(5)
    515.326.19120.60(15)
    521.826.19240.75(9)
    DownLoad: CSV
  • [1]

    Wang Z, Dong F, Zhou W 2015 Plasma Sci. Technol. 17 617Google Scholar

    [2]

    Wang Z, Ting B, Yuan, Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [3]

    Wang Z Z, Deguchi Y, Zhang Z Z, Wang Z, Zeng X Y, Yan J J 2016 Front. Phys. 11 114213Google Scholar

    [4]

    朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫 2015 物理学报 64 024212Google Scholar

    Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M, Li K H, Li X Y, Liu J G, Zeng X Y, Lu Y F 2015 Acta Phys. Sin. 64 024212Google Scholar

    [5]

    Wang Q Q, Liu K, Zhao H, Ge C H, Huang Z W 2012 Front. Phys. 7 701Google Scholar

    [6]

    Hu L, Zhao N, Liu W, Meng D, Fang L, Wang Y, Yu Y, Ma M 2015 Plasma Sci. Technol. 17 699Google Scholar

    [7]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497Google Scholar

    [8]

    Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X 2018 Appl. Spectrosc. Rev. 53 1Google Scholar

    [9]

    Li X, Wang Z, Fu Y, Li Z, Ni W 2015 Plasma Sci. Technol. 17 621Google Scholar

    [10]

    Wang X, Chen A, Sui L, Wang Y, Zhang D, Li S, Jiang Y, Jin M 2018 J. Anal. Atom. Spectrom. 33 168Google Scholar

    [11]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [12]

    Lu Y, Zhou Y S, Qiu W, Huang X, Liu L, Jiang L, Silvain J F, Lu Y F 2015 J. Anal. Atom. Spectrom. 30 2303Google Scholar

    [13]

    李百慧, 高勋, 宋超, 林景全 2016 物理学报 65 235201Google Scholar

    Li B H, Gao X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar

    [14]

    Li C M, Guo L B, He X N, Hao Z Q, Li X Y, Shen M, Zeng X Y, Lu Y F 2014 J. Anal. Atom. Spectrom. 29 638Google Scholar

    [15]

    Wang Q, Chen A, Zhang D, Wang Y, Sui L, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 073301Google Scholar

    [16]

    Zhou W, Su X, Qian H, Li K, Li X, Yu Y, Ren Z 2013 J. Anal. Atom. Spectrom. 28 702Google Scholar

    [17]

    Liu L, Huang X, Li S, Lu Y, Chen K, Jiang L, Silvain J F, Lu Y F 2015 Opt. Express 23 15047Google Scholar

    [18]

    de Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, de Pascale O 2013 Anal. Chem. 85 10180Google Scholar

    [19]

    Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y, Zeng X 2016 Opt. Express 24 7850Google Scholar

    [20]

    Tavassoli S H, Gragossian A 2009 Opt. Laser Technol. 41 481Google Scholar

    [21]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Appl. Phys. B 108 867Google Scholar

    [22]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40Google Scholar

    [23]

    Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M, Saghafifar H 2014 J. Eur. Opt. Soc.-Rapid 9 14058Google Scholar

    [24]

    Hanson C, Phongikaroon S, Scott J R 2014 Spectrochim. Acta B 97 79Google Scholar

    [25]

    Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S, Jin M 2017 Phys. Plasmas 24 013301Google Scholar

    [26]

    Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J, Pedarnig J D 2013 Spectrochim. Acta B 87 36Google Scholar

    [27]

    Liu Y, Tong Y, Li S, Wang Y, Chen A, Jin M 2016 Chin. Opt. Lett. 14 123001Google Scholar

    [28]

    Liu Y, Tong Y, Wang Y, Zhang D, Li S, Jiang Y, Chen A, Jin M 2017 Plasma Sci. Technol. 19 125501Google Scholar

    [29]

    Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 083305Google Scholar

    [30]

    Multari R A, Foster L E, Cremers D A, Ferris M J 1996 Appl. Spectrosc. 50 1483Google Scholar

    [31]

    Aguilera J A, Aragón C 2008 Spectrochim. Acta B 63 793Google Scholar

    [32]

    Chen M, Liu Y H, Liu X D, Zhao M W 2012 Laser Phys. Lett. 9 730Google Scholar

    [33]

    Kasperczuk A, Pisarczyk T, Kalal M, Ullschmied J, Krousky E, Masek K, Pfeifer M, Rohlena K, Skala J, Pisarczyk P 2009 Appl. Phys. Lett. 94 081501Google Scholar

    [34]

    Guo J, Shao J, Wang T, Zheng C, Chen A, Jin M 2017 J. Anal. Atom. Spectrom. 32 367Google Scholar

    [35]

    Zhang D, Chen A, Wang X, Wang Y, Sui L, Ke D, Li S, Jiang Y, Jin M 2018 Spectrochim. Acta B 143 71Google Scholar

    [36]

    刘月华, 陈明, 刘向东, 崔清强, 赵明文 2013 物理学报 62 025203Google Scholar

    Liu Y H, Chen M, Liu X D, Cui Q Q, Zhao M W 2013 Acta Phys. Sin. 62 025203Google Scholar

    [37]

    Li X, Wei W, Wu J, Jia S, Qiu A 2013 J. Appl. Phys. 113 243304Google Scholar

    [38]

    Amin S, Bashir S, Anjum S, Akram M, Hayat A, Waheed S, Iftikhar H, Dawood A, Mahmood K 2017 Phys. Plasmas 24 083112Google Scholar

    [39]

    Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 033302Google Scholar

    [40]

    Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R 2017 Appl. Phys. Express 10 072401Google Scholar

    [41]

    Wang Y, Chen A, Li S, Ke D, Wang X, Zhang D, Jiang Y, Jin M 2017 AIP Adv. 7 095204Google Scholar

    [42]

    Haq S U, Ahmat L, Mumtaz M, Shakeel H, Mahmood S, Nadeem A 2015 Phys. Plasmas 22 083504Google Scholar

    [43]

    Guo J, Wang T, Shao J, Chen A, Jin M 2018 J. Anal. Atom. Spectrom. 33 2116Google Scholar

    [44]

    Thorstensen J, Foss S E 2012 J. Appl. Phys. 112 103514Google Scholar

    [45]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [46]

    杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 物理学报 66 115201Google Scholar

    Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201Google Scholar

    [47]

    Wang Q, Chen A, Wang Y, Sui L, Li S, Jin M 2018 J. Anal. Atom. Spectrom. 33 1154Google Scholar

    [48]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301Google Scholar

    [49]

    NIST Atomic Spectra Database http://physics.nist.gov/PhysRefData/ASD/lines_form.html

    [50]

    Wang J, Fu H, Ni Z, Chen X, He W, Dong F 2015 Plasma Sci. Technol. 17 649Google Scholar

    [51]

    Konjević N, Wiese W 1990 J. Phys. Chem. Ref. Data 19 1307Google Scholar

  • [1] Hou Jia-Jia, Zhang Da-Cheng, Feng Zhong-Qi, Zhu Jiang-Feng. Quantitative analysis method of laser-induced breakdown spectroscopy based on temperature iterative correction of self-absorption effect. Acta Physica Sinica, 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] Dai Yu-Jia, Li Ming-Liang, Song Chao, Gao Xun, Hao Zuo-Qiang, Lin Jing-Quan. Accuracy improvement of Fe element in aluminum alloy by laser induced breakdown spectroscopy under spatial confinement combined with gradient descent. Acta Physica Sinica, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [3] Dong Peng-Kai, Zhao Shang-Yong, Zheng Ke-Xin, Wang Ji, Gao Xun, Hao Zuo-Qiang, Lin Jing-Quan. Rapid identification of ginseng origin by laser induced breakdown spectroscopy combined with neural network and support vector machine algorithm. Acta Physica Sinica, 2021, 70(4): 040201. doi: 10.7498/aps.70.20201520
    [4] Liu Li-Tuo, Wang Chun-Long, Yu Xiao-Ya, Shi Jun-Kai, Li Yao, Chen Xiao-Mei, Zhou Wei-Hu. Study of nano particle stripping and composition inspection on wafer surface. Acta Physica Sinica, 2020, 69(16): 165201. doi: 10.7498/aps.69.20200517
    [5] Zhao Fa-Gang, Zhang Yu, Zhang Lei, Yin Wang-Bao, Dong Lei, Ma Wei-Guang, Xiao Lian-Tuan, Jia Suo-Tang. Laser-induced plasma characterization using self-absorption quantification method. Acta Physica Sinica, 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [6] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [7] Yang Wen-Bin, Zhou Jiang-Ning, Li Bin-Cheng, Xing Ting-Wen. Time-resolved spectra and measurements of temperature and electron density of laser induced nitrogen plasma. Acta Physica Sinica, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [8] Liu Yu-Feng, Zhang Lian-Shui, He Wan-Lin, Huang Yu, Du Yan-Jun, Lan Li-Juan, Ding Yan-Jun, Peng Zhi-Min. Spectroscopic study on the laser-induced breakdown flame plasma. Acta Physica Sinica, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] Zhang Ying, Zhang Da-Cheng, Ma Xin-Wen, Pan Dong, Zhao Dong-Mei. Quantitative analysis of chromium in edible gelatin by using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [10] Chen Tian-Bing, Yao Ming-Yin, Liu Mu-Hua, Lin Yong-Zeng, Li Wen-Bing, Zheng Mei-Lan, Zhou Hua-Mao. Quantitative analysis of laser induced breakdown spectroscopy of Pb in navel orange based on multivariate calibration. Acta Physica Sinica, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [11] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [12] Guo Lian-Bo, Hao Rong-Fei, Hao Zhong-Qi, Li Kuo-Hu, Shen Meng, Ren Zhao, Li Xiang-You, Zeng Xiao-Yan. Study on the emission spectrum of AlO radical B2+X2+ transition using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(22): 224211. doi: 10.7498/aps.62.224211
    [13] Yu Yang, Hao Zhong-Qi, Li Chang-Mao, Guo Lian-Bo, Li Kuo-Hu, Zeng Qing-Dong, Li Xiang-You, Ren Zhao, Zeng Xiao-Yan. Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm. Acta Physica Sinica, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [14] Zhang Xu, Yao Ming-Yin, Liu Mu-Hua. Quantitative analysis of cadmium in navel orange by laser-induced breakdown spectroscopy combined with partial least squares. Acta Physica Sinica, 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [15] Wang Chun-Long, Liu Jian-Guo, Zhao Nan-Jing, Ma Ming-Jun, Wang Yin, Hu Li, Zhang Da-Hai, Yu Yang, Meng De-Shuo, Zhang Wei, Liu Jing, Zhang Yu-Jun, Liu Wen-Qing. Comparative analysis of quantitative method on heavy metal detection in water with laser-induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [16] Lu Cui-Ping, Liu Wen-Qing, Zhao Nan-Jing, Liu Li-Tuo, Chen Dong, Zhang Yu-Jun, Liu Jian-Guo. Quantitative analysis of chrome in soil samples usinglaser-induced breakdown spectroscopy. Acta Physica Sinica, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [17] Sun Dui-Xiong, Su Mao-Gen, Dong Chen-Zhong, Wang Xiang-Li, Zhang Da-Cheng, Ma Xin-Wen. Quantitative analysis of element concentration in Al alloy by using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [18] Qin You-Min, Zhao Cheng-Li, He Ping-Ni, Gou Fu-Jun, Ning Jian-Ping, Lü Xiao-Dan, Bogaerts A.. Molecular dynamics simulation of temperature effects on CF+3 etching of Si surface. Acta Physica Sinica, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [19] Zhang Da-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Li Bin, Zu Kai-Ling. Application of laser-induced breakdown spectroscopy in analyzing microelements in three kinds of fruit samples. Acta Physica Sinica, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [20] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
Metrics
  • Abstract views:  7821
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2018
  • Accepted Date:  06 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回