-
Laser-induced breakdown spectroscopy (LIBS) is an ideal real-time on-line method of detecting minor elements in alloys. However, in the case of laser-produced high-density plasma, the self-absorption is usually an undesired effect because it not only reduces the true line intensity, leading the line intensity to become nonlinear with the increase of emitting species content, but also affects the characterization parameters of the plasma, and finally affects the accuracy of quantitative analysis. Since the plasma electron temperature
$(T)$ , radiation particle number density and absorption path length (Nl ) determine the degree of self-absorption and affect the corrected spectral line intensity, a new self-absorption correction method is proposed based on temperature iteration. The initial T is obtained by using this method through spectral line intensity, and the self-absorption coefficient SA is calculated based on the initial Nl parameter to correct the spectral line intensity. Then a new T is obtained from the new spectral line intensity and the new SA is calculated to further correct the spectral line intensity. Through continuous calculation and correction of these two parameters, self-absorption correction is finally achieved. The experimental results of alloy steel samples show that the linearity of Boltzmann plot is increased from 0.867 without self-absorption correction to 0.974 with self-absorption correction, and the linear correlation coefficient R2 of the single variable calibration curve for Mn element increases from 0.971 to 0.997. The relative error of elemental content measurement is improved from 4.32% without self-absorption correction to 1.23% with self-absorption correction. Compared with the commonly applied self-absorption correction methods, this method has obvious advantages of simpler programming, higher computation efficiency, and its independence of the availability or accuracy of Stark broadening coefficients. Moreover, this method can directly obtain the radiation particle number density and absorption path length, which is beneficial to the diagnosis and quantitative analysis of plasma.-
Keywords:
- laser-induced breakdown spectroscopy (LIBS) /
- self-absorption /
- temperature iterative correction /
- quantitative analysis
[1] Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339
Google Scholar
[2] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571
Google Scholar
Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571
Google Scholar
[3] Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103
Google Scholar
[4] Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147
Google Scholar
[5] Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419
Google Scholar
[6] 杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201
Google Scholar
Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201
Google Scholar
[7] Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010
Google Scholar
[8] Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294
Google Scholar
[9] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201
Google Scholar
Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201
Google Scholar
[10] Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221
Google Scholar
[11] Mansour S A M 2015 Opt. Photonics J. 5 79
Google Scholar
[12] Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769
Google Scholar
[13] Sun L, Yu H 2009 Talanta 79 388
Google Scholar
[14] Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224
Google Scholar
[15] Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121
Google Scholar
[16] Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39
Google Scholar
[17] Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423
Google Scholar
[18] 王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101
Google Scholar
Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101
Google Scholar
[19] Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1
Google Scholar
[20] Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488
Google Scholar
[21] Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192
Google Scholar
[22] Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573
Google Scholar
[23] 侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8
Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03
[24] Kepple P, Griem H R 1968 Phys. Rev. 173 317
Google Scholar
[25] Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237
Google Scholar
[26] Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1
Google Scholar
-
表 1 中低合金钢标准样品中微量元素Mn的质量含量及不确定度
Table 1. Certified weight contents and uncertainty of minor element Mn in the middle-low alloy steels.
No. 1 2 3 4 5 6 Mn weight content/% 2.07 1.62 1.26 0.85 0.43 0.14 Uncertainty/% 0.03 0.03 0.02 0.004 0.004 0.003 表 2 Mn I谱线的光谱参数
Table 2. Spectroscopic parameters of the selected lines of Mn I.
Element Wavelength /nm Transition probability/(107 s–1) Statistical weight Upper level energy/eV Lower level energy/eV Mn I 383.44 4.29 8 5.40 2.16 403.31 1.65 6 3.07 0.00 404.14 7.87 10 5.18 2.11 475.40 3.03 8 4.89 2.28 476.23 7.83 10 5.49 2.89 478.34 4.01 8 4.89 2.30 482.35 4.99 8 4.89 2.32 Fe I 400.52 2.04 5 4.65 1.56 489.15 3.08 7 5.39 2.85 Hα 656.27 5.39 4 12.09 10.20 表 3 中低合金钢标准样品中微量元素Mn质量含量的测量相对误差
Table 3. Measurement relative error of minor element Mn in the middle-low alloy steels.
样品Mn元素
质量含量/%2.07 1.62 1.26 0.85 0.43 0.14 平均 校正前测量
相对误差/%5.80 4.32 1.58 7.06 18.60 28.57 10.99 校正后测量
相对误差/%1.45 1.23 0.79 2.35 2.32 21.43 4.93 -
[1] Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339
Google Scholar
[2] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571
Google Scholar
Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571
Google Scholar
[3] Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103
Google Scholar
[4] Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147
Google Scholar
[5] Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419
Google Scholar
[6] 杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201
Google Scholar
Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201
Google Scholar
[7] Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010
Google Scholar
[8] Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294
Google Scholar
[9] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201
Google Scholar
Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201
Google Scholar
[10] Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221
Google Scholar
[11] Mansour S A M 2015 Opt. Photonics J. 5 79
Google Scholar
[12] Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769
Google Scholar
[13] Sun L, Yu H 2009 Talanta 79 388
Google Scholar
[14] Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224
Google Scholar
[15] Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121
Google Scholar
[16] Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39
Google Scholar
[17] Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423
Google Scholar
[18] 王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101
Google Scholar
Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101
Google Scholar
[19] Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1
Google Scholar
[20] Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488
Google Scholar
[21] Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192
Google Scholar
[22] Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573
Google Scholar
[23] 侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8
Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03
[24] Kepple P, Griem H R 1968 Phys. Rev. 173 317
Google Scholar
[25] Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237
Google Scholar
[26] Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1
Google Scholar
Catalog
Metrics
- Abstract views: 2618
- PDF Downloads: 69
- Cited By: 0