Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative analysis method of laser-induced breakdown spectroscopy based on temperature iterative correction of self-absorption effect

Hou Jia-Jia Zhang Da-Cheng Feng Zhong-Qi Zhu Jiang-Feng

Citation:

Quantitative analysis method of laser-induced breakdown spectroscopy based on temperature iterative correction of self-absorption effect

Hou Jia-Jia, Zhang Da-Cheng, Feng Zhong-Qi, Zhu Jiang-Feng
cstr: 32037.14.aps.73.20231541
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Laser-induced breakdown spectroscopy (LIBS) is an ideal real-time on-line method of detecting minor elements in alloys. However, in the case of laser-produced high-density plasma, the self-absorption is usually an undesired effect because it not only reduces the true line intensity, leading the line intensity to become nonlinear with the increase of emitting species content, but also affects the characterization parameters of the plasma, and finally affects the accuracy of quantitative analysis. Since the plasma electron temperature $(T)$, radiation particle number density and absorption path length (Nl ) determine the degree of self-absorption and affect the corrected spectral line intensity, a new self-absorption correction method is proposed based on temperature iteration. The initial T is obtained by using this method through spectral line intensity, and the self-absorption coefficient SA is calculated based on the initial Nl parameter to correct the spectral line intensity. Then a new T is obtained from the new spectral line intensity and the new SA is calculated to further correct the spectral line intensity. Through continuous calculation and correction of these two parameters, self-absorption correction is finally achieved. The experimental results of alloy steel samples show that the linearity of Boltzmann plot is increased from 0.867 without self-absorption correction to 0.974 with self-absorption correction, and the linear correlation coefficient R2 of the single variable calibration curve for Mn element increases from 0.971 to 0.997. The relative error of elemental content measurement is improved from 4.32% without self-absorption correction to 1.23% with self-absorption correction. Compared with the commonly applied self-absorption correction methods, this method has obvious advantages of simpler programming, higher computation efficiency, and its independence of the availability or accuracy of Stark broadening coefficients. Moreover, this method can directly obtain the radiation particle number density and absorption path length, which is beneficial to the diagnosis and quantitative analysis of plasma.
      Corresponding author: Zhang Da-Cheng, dch.zhang@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205257, U2241288), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JQ-642), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF202104).
    [1]

    Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339Google Scholar

    [2]

    孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571Google Scholar

    Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571Google Scholar

    [3]

    Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103Google Scholar

    [4]

    Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147Google Scholar

    [5]

    Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [6]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [7]

    Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010Google Scholar

    [8]

    Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294Google Scholar

    [9]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [10]

    Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221Google Scholar

    [11]

    Mansour S A M 2015 Opt. Photonics J. 5 79Google Scholar

    [12]

    Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769Google Scholar

    [13]

    Sun L, Yu H 2009 Talanta 79 388Google Scholar

    [14]

    Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224Google Scholar

    [15]

    Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121Google Scholar

    [16]

    Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39Google Scholar

    [17]

    Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423Google Scholar

    [18]

    王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101Google Scholar

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101Google Scholar

    [19]

    Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1Google Scholar

    [20]

    Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488Google Scholar

    [21]

    Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192Google Scholar

    [22]

    Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573Google Scholar

    [23]

    侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8

    Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03

    [24]

    Kepple P, Griem H R 1968 Phys. Rev. 173 317Google Scholar

    [25]

    Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237Google Scholar

    [26]

    Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1Google Scholar

  • 图 1  基于温度迭代校正自吸收方法的流程图

    Figure 1.  Flowchart of the self-absorption correction method based on temperature iteration.

    图 2  合金钢样品的典型平均光谱

    Figure 2.  Typical average spectrum of the alloy steel samples.

    图 3  Mn I 476.23 nm谱线的定标曲线 (a) 原始强度; (b) 内标Fe线归一化强度

    Figure 3.  Calibration curves of Mn I 476.23 nm: (a) The raw intensity; (b) normalized intensity with internal standard Fe line.

    图 4  Mn质量含量为2.07%的合金样品自吸收校正前后Boltzmann比较图

    Figure 4.  Comparison of Boltzmann plots that without and with self-absorption (SA) correction for the 2.07% Mn alloy sample.

    图 5  Mn I 476.23 nm谱线经过自吸收校正后的内标归一化定标曲线

    Figure 5.  Calibration curves of Mn I 476.23 nm using the internal standard normalized intensity with self-absorption correction.

    图 6  Mn I 476.23 nm谱线的自吸收系数SA

    Figure 6.  The self-absorption coefficients (SA) for Mn I 476.23 nm line.

    图 7  时间积分LIBS分析中的等效门时间

    Figure 7.  Equivalent gate time in time-integrated LIBS analysis

    表 1  中低合金钢标准样品中微量元素Mn的质量含量及不确定度

    Table 1.  Certified weight contents and uncertainty of minor element Mn in the middle-low alloy steels.

    No.123456
    Mn weight content/%2.071.621.260.850.430.14
    Uncertainty/%0.030.030.020.0040.0040.003
    DownLoad: CSV

    表 2  Mn I谱线的光谱参数

    Table 2.  Spectroscopic parameters of the selected lines of Mn I.

    Element Wavelength /nm Transition probability/(107 s–1) Statistical weight Upper level energy/eV Lower level energy/eV
    Mn I 383.44 4.29 8 5.40 2.16
    403.31 1.65 6 3.07 0.00
    404.14 7.87 10 5.18 2.11
    475.40 3.03 8 4.89 2.28
    476.23 7.83 10 5.49 2.89
    478.34 4.01 8 4.89 2.30
    482.35 4.99 8 4.89 2.32
    Fe I 400.52 2.04 5 4.65 1.56
    489.15 3.08 7 5.39 2.85
    Hα 656.27 5.39 4 12.09 10.20
    DownLoad: CSV

    表 3  中低合金钢标准样品中微量元素Mn质量含量的测量相对误差

    Table 3.  Measurement relative error of minor element Mn in the middle-low alloy steels.

    样品Mn元素
    质量含量/%
    2.071.621.260.850.430.14平均
    校正前测量
    相对误差/%
    5.804.321.587.0618.6028.5710.99
    校正后测量
    相对误差/%
    1.451.230.792.352.3221.434.93
    DownLoad: CSV
  • [1]

    Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339Google Scholar

    [2]

    孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571Google Scholar

    Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571Google Scholar

    [3]

    Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103Google Scholar

    [4]

    Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147Google Scholar

    [5]

    Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [6]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [7]

    Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010Google Scholar

    [8]

    Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294Google Scholar

    [9]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [10]

    Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221Google Scholar

    [11]

    Mansour S A M 2015 Opt. Photonics J. 5 79Google Scholar

    [12]

    Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769Google Scholar

    [13]

    Sun L, Yu H 2009 Talanta 79 388Google Scholar

    [14]

    Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224Google Scholar

    [15]

    Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121Google Scholar

    [16]

    Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39Google Scholar

    [17]

    Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423Google Scholar

    [18]

    王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101Google Scholar

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101Google Scholar

    [19]

    Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1Google Scholar

    [20]

    Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488Google Scholar

    [21]

    Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192Google Scholar

    [22]

    Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573Google Scholar

    [23]

    侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8

    Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03

    [24]

    Kepple P, Griem H R 1968 Phys. Rev. 173 317Google Scholar

    [25]

    Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237Google Scholar

    [26]

    Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1Google Scholar

Metrics
  • Abstract views:  3763
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2023
  • Accepted Date:  20 November 2023
  • Available Online:  29 November 2023
  • Published Online:  05 March 2024

/

返回文章
返回