-
硅片表面纳米级污染颗粒的检测与去除是集成电路制造(Integrated Circuit, IC)的关键环节. 本文主要对纳秒级脉冲激光作用至硅片表面后纳米颗粒的动力学过程及颗粒成分在线检测方法进行了研究. 搭建了双脉冲激光测量实验系统, 并通过实验对300 nm Cu颗粒进行了双脉冲激光实验观测, 通过分析表征颗粒运动轨迹的击穿光谱特征, 从实验上观测到了清洗激光作用后颗粒沿垂直硅片表面向上的运动轨迹. 在综合考虑空气碰撞阻力、颗粒重力的影响下, 建立了激光清洗后颗粒的运动模型, 并与实验相结合求解了运动模型参数, 计算获得了清洗激光作用后颗粒的初始速度和激光作用时间内颗粒的平均加速度. 本文为激光诱导晶圆表面纳米颗粒去吸附以及激光至纳米颗粒动力学过程研究提供了一种模型方法, 也为集成电路污染源在线检测提供了一种重要方法.Nano-scale particle stripping and inspection on silicon wafer are critical issues for Integrated Circuit(IC) manufacture industry. As more new materials are used in IC manufacture, not only particle itself but also its composition should be inspected. Particles are mainly adhered by the van der waals force. One of potential particle desorption method is laser cleaning which is environment friendly. However, the mechanism of laser cleaning is not clear and more studies should be done for laser ablation. In this paper, the kinetic process of nano particle on silicon wafer induced by nanosecond pulsed laser as well as the on-line detection method of particle composition were studied. A potential method of nano particle dynamic analysis and particle composition inspection were presented. A dual nanosecond pulse laser system both wavelengths at 532 nm is designed in which one laser pumps the particles away from wafer surface almost without damage, the other laser breakdowns the particles in air above the wafer surface to obtain the emission lines of the contaminated particles of 300 nm Cu by a spectroscopy with CCD. Particle motion trail in z direction was observed after laser cleaning by analyzing particle spectral features. The particle dynamic model after stripping was established in which the resistance of air collision and gravity were included. And the model parameters were obtained by calculation using experimental results. The initial velocity of particle at the end of laser pulse and the average acceleration during laser interaction were calculated which were 7.6 m/s and 7.6 × 108 m/s2 respectively. The sensitivity of the dual laser system was evaluated which was between 2.1 × 1013 to 5.1 × 1013 atoms/cm2. As result, it is found that the gravity of the particle should not be ignored and the velocity divergence between different stripping particles is existed. The study not only provides a methodology for the study of laser-induced removal of nano particles on the wafer surface and laser induced nano particle dynamics, but also provides a potential method for the inspection of particle composition and pollution source monitoring on line in integrated circuit manufacture process. As the results were not the optimum one and further study should be done in which a better laser power density should be used.
-
Keywords:
- dynamic model of nano particle /
- laser induced breakdown spectroscopy /
- laser cleaning /
- composition inspection
[1] Zapka W, Ziemlich W 1991 Appl. Phys. Lett. 58 2217Google Scholar
[2] Hsu S C, Lin J 2006 Optics & Laser Technol. 38 544
[3] Arnold N 2003 Appl. Surf. Sci. 208 15
[4] Grojo D, Cos A, Delaporte P, Sentis M 2006 Appl. Phys. B 84 517Google Scholar
[5] Mosbacher M, Münzer H J, Zimmermann J, Solis J, Boneberg J, Leiderer P 2001 Appl.Phys. A 72 41Google Scholar
[6] Mosbacher M, Dobler V, Bertsch M, Munzer J, Boneberg J, Leiderer P 2003 Surf. Contam. Clean. (Vol. 1) (Konstanz: KOPS Press) p17
[7] Seo C, Shin H, Kim D. 2018 Laser Technol.: Applications in Adhesion and Related Areas (Beverly: Scrivener Publishing LLC) pp379–416
[8] 吴东江, 许媛, 王续跃, 康仁科, 司马媛, 胡礼中 2006 光学精密工程 14 765
Wu D J, Xu Y, Wang X Y, Kang R K, Si M Y, Hu L Z 2006 Optics and Precision Engineering 14 765
[9] 谭东晖, 陆冬生, 宋文栋, 范永昌, 安承武 1995 激光技术 19 319
Tan D H, Lu D S, Song W D, Fan Y C, An C W 1995 Laser Technol. 19 319
[10] 谭东晖, 陆冬生, 宋文栋, 安承武 1996 华中理工大学学报 24 50
Tan D H, Lu D S, Song W D, An C W 1996 J. Huazhong Univ. Sci. Technol. 24 50
[11] Meredith B, Scott A 2010 Microelectron. Eng. 87 1701Google Scholar
[12] Chowdhury V, Simionas D, Fu K, Huang J, Sun P 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) New York, USA, April 30−May 3, 2018 p1109
[13] Chakraborty S, Luz Manalo M, Moideen Ali J, Armin G, Joel B 2017 7th international Conference on Silicon Photovoltaics, SiliconPV Freiburg, Germany, April 3−5, 2017 p24
[14] Ferlito E P, Alnabulsi S, Mello D 2011 Appl. Surf. Sci. 257 9925Google Scholar
[15] Polignano M L, Borionetti G, Galbiati A, Grasso S, Mica I, Nutsch A 2018 Spectrochim. Acta, Part B 2 117
[16] Ohno R, Saga K 2018 Solid State Phenom. 282 309Google Scholar
[17] Danel A, Sage S, Barnes J P, Peters D, Spicer R, Bryant R, Newcomb R 2009 Microelectron. Eng. 86 186Google Scholar
[18] Budri T 2008 Appl. Surf. Sci. 254 4768Google Scholar
[19] Zanderigo F, Ferrari S, Queirolo G, Pello C, Borgini M 2000 J. Mater. Sci. Eng.B 73 173Google Scholar
[20] Yang C K, Chi P H, Lin Y C, Sun Y C, Yang M H 2010 Talanta 80 1222Google Scholar
[21] Rostam-Khani P, Hopstaken M J P, Vullings P, Noij G, Halloran O O, Claassen W 2004 Appl. Surf. Sci. 231 720
[22] Salvatore A, Luisa C, Francesco C, Violeta L, Giorgio M, Pierandrea M, Antonio P, Andrea R, Pawel G, Wojciech G, Monika K 2020 Fusion Eng. Des. 157 111685Google Scholar
[23] Millar S, Kruschwitz S, Wilsch G 2019 Cem. Concr. Res. 117 16Google Scholar
[24] Guo L B, Cheng X T, Yun T, Shi S H, Zhong Q L, Lu X Y, Zeng Y F, Xiao Y 2019 Spectrochim. Acta, Part B 152 38Google Scholar
[25] Xian H, Bakker M C M 2014 Talanta 120 239Google Scholar
[26] Davari S A, Taylor P A 2019 Talanta 18 192
[27] Romero D, Romero J M F, Laserna J J 1999 J. Anal. At. Spectrom 14 199Google Scholar
-
表 1 5种不同浓度样品
Table 1. Five samples of different concentrations.
Sample No. 1 2 3 4 5 Concentration/1013 atoms·cm–2 152 76 38 5.1 2.1 表 2 硅片击穿阈值实验结果
Table 2. Experimental results of silicon wafer damage threshold.
Spots No. 1 2 3 4 5 Power density/108 W·cm–2 1.64 1.52 1.32 1.21 1.11 -
[1] Zapka W, Ziemlich W 1991 Appl. Phys. Lett. 58 2217Google Scholar
[2] Hsu S C, Lin J 2006 Optics & Laser Technol. 38 544
[3] Arnold N 2003 Appl. Surf. Sci. 208 15
[4] Grojo D, Cos A, Delaporte P, Sentis M 2006 Appl. Phys. B 84 517Google Scholar
[5] Mosbacher M, Münzer H J, Zimmermann J, Solis J, Boneberg J, Leiderer P 2001 Appl.Phys. A 72 41Google Scholar
[6] Mosbacher M, Dobler V, Bertsch M, Munzer J, Boneberg J, Leiderer P 2003 Surf. Contam. Clean. (Vol. 1) (Konstanz: KOPS Press) p17
[7] Seo C, Shin H, Kim D. 2018 Laser Technol.: Applications in Adhesion and Related Areas (Beverly: Scrivener Publishing LLC) pp379–416
[8] 吴东江, 许媛, 王续跃, 康仁科, 司马媛, 胡礼中 2006 光学精密工程 14 765
Wu D J, Xu Y, Wang X Y, Kang R K, Si M Y, Hu L Z 2006 Optics and Precision Engineering 14 765
[9] 谭东晖, 陆冬生, 宋文栋, 范永昌, 安承武 1995 激光技术 19 319
Tan D H, Lu D S, Song W D, Fan Y C, An C W 1995 Laser Technol. 19 319
[10] 谭东晖, 陆冬生, 宋文栋, 安承武 1996 华中理工大学学报 24 50
Tan D H, Lu D S, Song W D, An C W 1996 J. Huazhong Univ. Sci. Technol. 24 50
[11] Meredith B, Scott A 2010 Microelectron. Eng. 87 1701Google Scholar
[12] Chowdhury V, Simionas D, Fu K, Huang J, Sun P 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) New York, USA, April 30−May 3, 2018 p1109
[13] Chakraborty S, Luz Manalo M, Moideen Ali J, Armin G, Joel B 2017 7th international Conference on Silicon Photovoltaics, SiliconPV Freiburg, Germany, April 3−5, 2017 p24
[14] Ferlito E P, Alnabulsi S, Mello D 2011 Appl. Surf. Sci. 257 9925Google Scholar
[15] Polignano M L, Borionetti G, Galbiati A, Grasso S, Mica I, Nutsch A 2018 Spectrochim. Acta, Part B 2 117
[16] Ohno R, Saga K 2018 Solid State Phenom. 282 309Google Scholar
[17] Danel A, Sage S, Barnes J P, Peters D, Spicer R, Bryant R, Newcomb R 2009 Microelectron. Eng. 86 186Google Scholar
[18] Budri T 2008 Appl. Surf. Sci. 254 4768Google Scholar
[19] Zanderigo F, Ferrari S, Queirolo G, Pello C, Borgini M 2000 J. Mater. Sci. Eng.B 73 173Google Scholar
[20] Yang C K, Chi P H, Lin Y C, Sun Y C, Yang M H 2010 Talanta 80 1222Google Scholar
[21] Rostam-Khani P, Hopstaken M J P, Vullings P, Noij G, Halloran O O, Claassen W 2004 Appl. Surf. Sci. 231 720
[22] Salvatore A, Luisa C, Francesco C, Violeta L, Giorgio M, Pierandrea M, Antonio P, Andrea R, Pawel G, Wojciech G, Monika K 2020 Fusion Eng. Des. 157 111685Google Scholar
[23] Millar S, Kruschwitz S, Wilsch G 2019 Cem. Concr. Res. 117 16Google Scholar
[24] Guo L B, Cheng X T, Yun T, Shi S H, Zhong Q L, Lu X Y, Zeng Y F, Xiao Y 2019 Spectrochim. Acta, Part B 152 38Google Scholar
[25] Xian H, Bakker M C M 2014 Talanta 120 239Google Scholar
[26] Davari S A, Taylor P A 2019 Talanta 18 192
[27] Romero D, Romero J M F, Laserna J J 1999 J. Anal. At. Spectrom 14 199Google Scholar
计量
- 文章访问数: 8557
- PDF下载量: 110
- 被引次数: 0