搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅片表面纳米颗粒剥离及其成分检测方法研究

刘立拓 王春龙 余晓娅 石俊凯 黎尧 陈晓梅 周维虎

引用本文:
Citation:

硅片表面纳米颗粒剥离及其成分检测方法研究

刘立拓, 王春龙, 余晓娅, 石俊凯, 黎尧, 陈晓梅, 周维虎

Study of nano particle stripping and composition inspection on wafer surface

Liu Li-Tuo, Wang Chun-Long, Yu Xiao-Ya, Shi Jun-Kai, Li Yao, Chen Xiao-Mei, Zhou Wei-Hu
PDF
HTML
导出引用
  • 硅片表面纳米级污染颗粒的检测与去除是集成电路制造(Integrated Circuit, IC)的关键环节. 本文主要对纳秒级脉冲激光作用至硅片表面后纳米颗粒的动力学过程及颗粒成分在线检测方法进行了研究. 搭建了双脉冲激光测量实验系统, 并通过实验对300 nm Cu颗粒进行了双脉冲激光实验观测, 通过分析表征颗粒运动轨迹的击穿光谱特征, 从实验上观测到了清洗激光作用后颗粒沿垂直硅片表面向上的运动轨迹. 在综合考虑空气碰撞阻力、颗粒重力的影响下, 建立了激光清洗后颗粒的运动模型, 并与实验相结合求解了运动模型参数, 计算获得了清洗激光作用后颗粒的初始速度和激光作用时间内颗粒的平均加速度. 本文为激光诱导晶圆表面纳米颗粒去吸附以及激光至纳米颗粒动力学过程研究提供了一种模型方法, 也为集成电路污染源在线检测提供了一种重要方法.
    Nano-scale particle stripping and inspection on silicon wafer are critical issues for Integrated Circuit(IC) manufacture industry. As more new materials are used in IC manufacture, not only particle itself but also its composition should be inspected. Particles are mainly adhered by the van der waals force. One of potential particle desorption method is laser cleaning which is environment friendly. However, the mechanism of laser cleaning is not clear and more studies should be done for laser ablation. In this paper, the kinetic process of nano particle on silicon wafer induced by nanosecond pulsed laser as well as the on-line detection method of particle composition were studied. A potential method of nano particle dynamic analysis and particle composition inspection were presented. A dual nanosecond pulse laser system both wavelengths at 532 nm is designed in which one laser pumps the particles away from wafer surface almost without damage, the other laser breakdowns the particles in air above the wafer surface to obtain the emission lines of the contaminated particles of 300 nm Cu by a spectroscopy with CCD. Particle motion trail in z direction was observed after laser cleaning by analyzing particle spectral features. The particle dynamic model after stripping was established in which the resistance of air collision and gravity were included. And the model parameters were obtained by calculation using experimental results. The initial velocity of particle at the end of laser pulse and the average acceleration during laser interaction were calculated which were 7.6 m/s and 7.6 × 108 m/s2 respectively. The sensitivity of the dual laser system was evaluated which was between 2.1 × 1013 to 5.1 × 1013 atoms/cm2. As result, it is found that the gravity of the particle should not be ignored and the velocity divergence between different stripping particles is existed. The study not only provides a methodology for the study of laser-induced removal of nano particles on the wafer surface and laser induced nano particle dynamics, but also provides a potential method for the inspection of particle composition and pollution source monitoring on line in integrated circuit manufacture process. As the results were not the optimum one and further study should be done in which a better laser power density should be used.
      通信作者: 刘立拓, liulituo@ime.ac.cn
    • 基金项目: 国家级-激光诱导击穿光谱结合热膨胀原理对硅片表面污染颗粒成分无损检测方法研究(61404171)
      Corresponding author: Liu Li-Tuo, liulituo@ime.ac.cn
    [1]

    Zapka W, Ziemlich W 1991 Appl. Phys. Lett. 58 2217Google Scholar

    [2]

    Hsu S C, Lin J 2006 Optics & Laser Technol. 38 544

    [3]

    Arnold N 2003 Appl. Surf. Sci. 208 15

    [4]

    Grojo D, Cos A, Delaporte P, Sentis M 2006 Appl. Phys. B 84 517Google Scholar

    [5]

    Mosbacher M, Münzer H J, Zimmermann J, Solis J, Boneberg J, Leiderer P 2001 Appl.Phys. A 72 41Google Scholar

    [6]

    Mosbacher M, Dobler V, Bertsch M, Munzer J, Boneberg J, Leiderer P 2003 Surf. Contam. Clean. (Vol. 1) (Konstanz: KOPS Press) p17

    [7]

    Seo C, Shin H, Kim D. 2018 Laser Technol.: Applications in Adhesion and Related Areas (Beverly: Scrivener Publishing LLC) pp379–416

    [8]

    吴东江, 许媛, 王续跃, 康仁科, 司马媛, 胡礼中 2006 光学精密工程 14 765

    Wu D J, Xu Y, Wang X Y, Kang R K, Si M Y, Hu L Z 2006 Optics and Precision Engineering 14 765

    [9]

    谭东晖, 陆冬生, 宋文栋, 范永昌, 安承武 1995 激光技术 19 319

    Tan D H, Lu D S, Song W D, Fan Y C, An C W 1995 Laser Technol. 19 319

    [10]

    谭东晖, 陆冬生, 宋文栋, 安承武 1996 华中理工大学学报 24 50

    Tan D H, Lu D S, Song W D, An C W 1996 J. Huazhong Univ. Sci. Technol. 24 50

    [11]

    Meredith B, Scott A 2010 Microelectron. Eng. 87 1701Google Scholar

    [12]

    Chowdhury V, Simionas D, Fu K, Huang J, Sun P 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) New York, USA, April 30−May 3, 2018 p1109

    [13]

    Chakraborty S, Luz Manalo M, Moideen Ali J, Armin G, Joel B 2017 7th international Conference on Silicon Photovoltaics, SiliconPV Freiburg, Germany, April 3−5, 2017 p24

    [14]

    Ferlito E P, Alnabulsi S, Mello D 2011 Appl. Surf. Sci. 257 9925Google Scholar

    [15]

    Polignano M L, Borionetti G, Galbiati A, Grasso S, Mica I, Nutsch A 2018 Spectrochim. Acta, Part B 2 117

    [16]

    Ohno R, Saga K 2018 Solid State Phenom. 282 309Google Scholar

    [17]

    Danel A, Sage S, Barnes J P, Peters D, Spicer R, Bryant R, Newcomb R 2009 Microelectron. Eng. 86 186Google Scholar

    [18]

    Budri T 2008 Appl. Surf. Sci. 254 4768Google Scholar

    [19]

    Zanderigo F, Ferrari S, Queirolo G, Pello C, Borgini M 2000 J. Mater. Sci. Eng.B 73 173Google Scholar

    [20]

    Yang C K, Chi P H, Lin Y C, Sun Y C, Yang M H 2010 Talanta 80 1222Google Scholar

    [21]

    Rostam-Khani P, Hopstaken M J P, Vullings P, Noij G, Halloran O O, Claassen W 2004 Appl. Surf. Sci. 231 720

    [22]

    Salvatore A, Luisa C, Francesco C, Violeta L, Giorgio M, Pierandrea M, Antonio P, Andrea R, Pawel G, Wojciech G, Monika K 2020 Fusion Eng. Des. 157 111685Google Scholar

    [23]

    Millar S, Kruschwitz S, Wilsch G 2019 Cem. Concr. Res. 117 16Google Scholar

    [24]

    Guo L B, Cheng X T, Yun T, Shi S H, Zhong Q L, Lu X Y, Zeng Y F, Xiao Y 2019 Spectrochim. Acta, Part B 152 38Google Scholar

    [25]

    Xian H, Bakker M C M 2014 Talanta 120 239Google Scholar

    [26]

    Davari S A, Taylor P A 2019 Talanta 18 192

    [27]

    Romero D, Romero J M F, Laserna J J 1999 J. Anal. At. Spectrom 14 199Google Scholar

  • 图 1  激光清洗机理示意图

    Fig. 1.  Schematic diagram of laser cleaning mechanism.

    图 2  实验系统示意图

    Fig. 2.  Schematic diagram of experimental system.

    图 3  硅片损伤阈值SEM图

    Fig. 3.  SEM image for breakdown threshold of silicon wafer.

    图 4  不同激光功率密度下共焦显微镜拍摄图像 (a) 10 × 107 W/cm2; (b) 8 × 107 W/cm2; (c) 6 × 107 W/cm2

    Fig. 4.  Confocal microscope images under different laser power densities: (a) 10 × 107 W/cm2; (b) 8 × 107 W/cm2; (c) 6 × 107 W/cm2.

    图 5  铜板LIBS时间演化特征

    Fig. 5.  Time evolution features of LIBS from copper plate.

    图 6  空气与样品的LIBS实验结果

    Fig. 6.  LIBS experimental results of air and the sample.

    图 7  样品1的延时实验结果 (a) 0−1 ms, (b) 0−30 ms

    Fig. 7.  Delay time experimental results of sample 1: (a) delay time is 0−1 ms, (b) delay time is 0−30 ms.

    图 8  延时为1 ms时不同Cu颗粒浓度样品实验结果 (a) 三维光谱强度; (b)峰值光谱强度

    Fig. 8.  Experimental results of Cu particles with different concentrations when delay time was 1 ms: (a) 3D spectral intensity; (b) peak of spectral intensity.

    表 1  5种不同浓度样品

    Table 1.  Five samples of different concentrations.

    Sample No.12345
    Concentration/1013 atoms·cm–215276385.12.1
    下载: 导出CSV

    表 2  硅片击穿阈值实验结果

    Table 2.  Experimental results of silicon wafer damage threshold.

    Spots No.12345
    Power density/108 W·cm–21.641.521.321.211.11
    下载: 导出CSV
  • [1]

    Zapka W, Ziemlich W 1991 Appl. Phys. Lett. 58 2217Google Scholar

    [2]

    Hsu S C, Lin J 2006 Optics & Laser Technol. 38 544

    [3]

    Arnold N 2003 Appl. Surf. Sci. 208 15

    [4]

    Grojo D, Cos A, Delaporte P, Sentis M 2006 Appl. Phys. B 84 517Google Scholar

    [5]

    Mosbacher M, Münzer H J, Zimmermann J, Solis J, Boneberg J, Leiderer P 2001 Appl.Phys. A 72 41Google Scholar

    [6]

    Mosbacher M, Dobler V, Bertsch M, Munzer J, Boneberg J, Leiderer P 2003 Surf. Contam. Clean. (Vol. 1) (Konstanz: KOPS Press) p17

    [7]

    Seo C, Shin H, Kim D. 2018 Laser Technol.: Applications in Adhesion and Related Areas (Beverly: Scrivener Publishing LLC) pp379–416

    [8]

    吴东江, 许媛, 王续跃, 康仁科, 司马媛, 胡礼中 2006 光学精密工程 14 765

    Wu D J, Xu Y, Wang X Y, Kang R K, Si M Y, Hu L Z 2006 Optics and Precision Engineering 14 765

    [9]

    谭东晖, 陆冬生, 宋文栋, 范永昌, 安承武 1995 激光技术 19 319

    Tan D H, Lu D S, Song W D, Fan Y C, An C W 1995 Laser Technol. 19 319

    [10]

    谭东晖, 陆冬生, 宋文栋, 安承武 1996 华中理工大学学报 24 50

    Tan D H, Lu D S, Song W D, An C W 1996 J. Huazhong Univ. Sci. Technol. 24 50

    [11]

    Meredith B, Scott A 2010 Microelectron. Eng. 87 1701Google Scholar

    [12]

    Chowdhury V, Simionas D, Fu K, Huang J, Sun P 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) New York, USA, April 30−May 3, 2018 p1109

    [13]

    Chakraborty S, Luz Manalo M, Moideen Ali J, Armin G, Joel B 2017 7th international Conference on Silicon Photovoltaics, SiliconPV Freiburg, Germany, April 3−5, 2017 p24

    [14]

    Ferlito E P, Alnabulsi S, Mello D 2011 Appl. Surf. Sci. 257 9925Google Scholar

    [15]

    Polignano M L, Borionetti G, Galbiati A, Grasso S, Mica I, Nutsch A 2018 Spectrochim. Acta, Part B 2 117

    [16]

    Ohno R, Saga K 2018 Solid State Phenom. 282 309Google Scholar

    [17]

    Danel A, Sage S, Barnes J P, Peters D, Spicer R, Bryant R, Newcomb R 2009 Microelectron. Eng. 86 186Google Scholar

    [18]

    Budri T 2008 Appl. Surf. Sci. 254 4768Google Scholar

    [19]

    Zanderigo F, Ferrari S, Queirolo G, Pello C, Borgini M 2000 J. Mater. Sci. Eng.B 73 173Google Scholar

    [20]

    Yang C K, Chi P H, Lin Y C, Sun Y C, Yang M H 2010 Talanta 80 1222Google Scholar

    [21]

    Rostam-Khani P, Hopstaken M J P, Vullings P, Noij G, Halloran O O, Claassen W 2004 Appl. Surf. Sci. 231 720

    [22]

    Salvatore A, Luisa C, Francesco C, Violeta L, Giorgio M, Pierandrea M, Antonio P, Andrea R, Pawel G, Wojciech G, Monika K 2020 Fusion Eng. Des. 157 111685Google Scholar

    [23]

    Millar S, Kruschwitz S, Wilsch G 2019 Cem. Concr. Res. 117 16Google Scholar

    [24]

    Guo L B, Cheng X T, Yun T, Shi S H, Zhong Q L, Lu X Y, Zeng Y F, Xiao Y 2019 Spectrochim. Acta, Part B 152 38Google Scholar

    [25]

    Xian H, Bakker M C M 2014 Talanta 120 239Google Scholar

    [26]

    Davari S A, Taylor P A 2019 Talanta 18 192

    [27]

    Romero D, Romero J M F, Laserna J J 1999 J. Anal. At. Spectrom 14 199Google Scholar

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法. 物理学报, 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 董鹏凯, 赵上勇, 郑柯鑫, 王蓟, 高勋, 郝作强, 林景全. 激光诱导击穿光谱技术结合神经网络和支持向量机算法的人参产地快速识别研究. 物理学报, 2021, 70(4): 040201. doi: 10.7498/aps.70.20201520
    [3] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度. 物理学报, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [4] 杨雪, 李苏宇, 姜远飞, 陈安民, 金明星. 不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响. 物理学报, 2019, 68(6): 065201. doi: 10.7498/aps.68.20182198
    [5] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法. 物理学报, 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [6] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [7] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [8] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素. 物理学报, 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [9] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [10] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [11] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素. 物理学报, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [12] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析. 物理学报, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [13] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究. 物理学报, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [14] 郭连波, 郝荣飞, 郝中骐, 李阔湖, 沈萌, 任昭, 李祥友, 曾晓雁. 激光诱导AlO自由基B2+X2+跃迁光谱研究. 物理学报, 2013, 62(22): 224211. doi: 10.7498/aps.62.224211
    [15] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究. 物理学报, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [16] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量. 物理学报, 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [17] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究. 物理学报, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [18] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究. 物理学报, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [19] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析. 物理学报, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [20] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析. 物理学报, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
计量
  • 文章访问数:  8557
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-05-14
  • 上网日期:  2020-05-18
  • 刊出日期:  2020-08-20

/

返回文章
返回