Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulations of effect of electron beam injection on dipole magnetic field confined plasma

PAN Yuhao WANG Zhibin YE Zhuohui YI Zuning CHEN Jian XIAO Qingmei MAO Aohua ZHANG Zhonglin NIE Qiuyue

Citation:

Simulations of effect of electron beam injection on dipole magnetic field confined plasma

PAN Yuhao, WANG Zhibin, YE Zhuohui, YI Zuning, CHEN Jian, XIAO Qingmei, MAO Aohua, ZHANG Zhonglin, NIE Qiuyue
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Research into the characteristics of dipole magnetic field-confined plasmas and their interaction with charged particle beams is critical for understanding near-Earth magnetospheric plasma. In this paper, a fully relativistic electromagnetic particle-in-cell (PIC) method, implemented with the open-source code Smilei, is used to perform three-dimensional kinetic simulations of the evolution of electron beams injected into the dipole magnetic field confined plasmas. The simulation adopts a uniform grid with 256 cells in each spatial direction, neglects collisional effects, and considers a plasma consisting only of electrons and ions. The initial plasma with a number density of 1×1012 m–3 is configured as a rectangular toroidal structure with a square cross-section. An externally prescribed dipole magnetic field is applied to the simulation domain. This field is generated by an ideal current loop centered in the grid’s x-y plane, with a loop radius of 1/8 the grid length a current magnitude of 4000 A, and a maximum magnetic field strength of 6000 G. Under these conditions, the ratio of electron plasma frequency to gyrofrequency ranges from 5.3×10–4 to 3.2, and the plasma beta varies from 2.24×10–10 to 8×10–3. The grid cell size is set to 0.05 times the electron Debye length, and the time step is 0.95 times the CFL time step. The simulation runs for a total of 20000 steps to achieve a quasi-steady state. The electron beams with a temperature of 10 eV and a drift velocity of 1×107 m/s are injected from the x-min boundary of the grid at angles of 0°, 30°, and 60° relative to the positive x-axis, to explore the influence of electron beams with varying injection angles on the dipole magnetic field confined plasma.The simulation results demonstrate the spatiotemporal evolution and behavior of the electron beam and plasma. Specifically, the plasma confined by a dipole magnetic field forms a crescent-shaped shell structure that aligns with magnetic field lines, with toroidal currents of opposite directions generated inside and outside the shell. When the electron beam is injected at incident angles of 0° and 30°, drift effects cause most of beam particles to concentrate along a specific magnetic field line on the x = y plane. Additionally, the drift current induced by electron beam injection changes the distribution of the central toroidal current in the main plasma, resulting in localized enhancement and attenuation of the toroidal current. In contrast, at an injection angle of 60°, the vast majority of beam particles are scattered by the dipole magnetic field, and fail to reach the central region to interact with the main plasma. Simulation findings further indicate that when the electron beam’s injection angle relative to the magnetic field direction exceeds 20° and its drift velocity is misaligned with the dipole field center, most of beam particles scatter and are ejected from the simulation domain, precluding interaction with the dipole-confined plasma. For future experimental devices studying the interactions between electron beam and plasma in dipole magnetic field confinement systems, choosing an appropriate beam injection direction is critical to ensure that the electrons can reach the core region of the dipole field and interact with the confined plasma. This study offers valuable insights into the dynamic behavior of plasma in dipole magnetic fields, aiding space plasma research facilities in achieving their designed scientific objectives.
  • 图 1  计算域示意图

    Figure 1.  Schematic diagram of the simulation domain.

    图 2  注入角为0°的电子束作用下等离子体的电荷密度分布 (a), (c), (e)分别为1000步、8000步和20000步时刻的二维分布; (b), (d), (f)分别为1000步、8000步和20000步时刻的三维分布

    Figure 2.  Charge number density distribution of the plasma under beam injection with an injection angle of 0°: (a), (c), (e) Two-dimensional distributions at 1000 steps, 8000 steps, and 20000 steps, respectively; (b), (d), (f) three-dimensional distributions at 1000 steps, 8000 steps, and 20000 steps, respectively.

    图 3  注入角度为0°的电子束作用下不同时刻的三维电荷密度分布俯视图 (a) t = 8000Δt; (b) t = 10000Δt; (c) t = 15000Δt; (d) t = 20000Δt

    Figure 3.  Top view of the three-dimensional charge number density distribution at different moments under beam injection with an injection angle of 0°: (a)t = 8000Δt; (b) t = 10000Δt; (c) t = 15000Δt; (d) t = 20000Δt.

    图 4  注入角度为0°的电子束作用下不同时间步长网格对角线平面(x = y平面)处扰动磁场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Figure 4.  Streamlines and distributions of the disturbed magnetic field on the grid diagonal plane (x = y plane) with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 5  无电子束注入时网格对角线平面(x-z平面)处扰动磁场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt

    Figure 5.  Streamline and distribution of the disturbed magnetic field in the diagonal plane (x-z plane) of the grid when injected without electron beam: (a) t = 1000Δt; (b) t = 5000Δt.

    图 6  无电子束注入时不同时间步长的电流密度分量剖面图 (a) Jx沿穿过赤道平面中心的y方向线; (b) Jy沿着穿过赤道平面中心的x方向线

    Figure 6.  Profiles of the current density components at different time steps in the case without beam injection: (a) Jx along the y-direction line through the center of the equatorial plane; (b) Jy follows the line of x through the center of the equatorial plane.

    图 7  注入角为0°的电子束作用下不同时间步长网格对角线平面(x = y平面)电场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Figure 7.  Streamlines and distributions of the electric field on the grid diagonal plane (x = y plane) with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 8  注入角度为0°的电子束作用下, 穿过网格中心的x-y平面上的Jx分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt

    Figure 8.  Jx distribution on the x-y plane through the center of the grid with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt.

    图 9  注入角度为0°的电子束作用下通过网格中心的x-y平面上的Jy分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt

    Figure 9.  Jy distribution on the x-y plane through the center of the grid with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt.

    图 10  注入角为0°的电子束作用下不同时间步长的电流密度分量剖面图 (a) Jx沿穿过赤道平面中心的y方向线; (b) Jy沿着穿过赤道平面中心的x方向线

    Figure 10.  Profiles of current density components at different time steps under beam injection with an injection angle of 0°: (a) Jx along the y-direction line through the center of the equatorial plane; (b) Jy along the x-direction line through the center of the equatorial plane

    图 11  注入角为30°的电子束作用下等离子体的电荷密度分布 (a), (c), (e)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的二维空间分布; (b), (d), (f)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的三维空间分布

    Figure 11.  The charge number density distribution of plasma under electron beam injection with an injection angle of 30°: (a), (c), (e) The two-dimensional spatial distribution of t = 1000Δt; t = 8000Δt and t = 20000Δt; respectively; (b), (d), (f) the three-dimensional spatial distributions at t = 1000Δt, t = 8000Δt and t = 20000Δt, respectively.

    图 12  注入角度为30°的电子束作用下不同时刻网格对角线平面(x = y平面)处扰动磁场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Figure 12.  Streamlines and distributions of the disturbed magnetic field on the diagonal plane (x = y plane) with 30° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 13  注入角度为30°的电子束作用下不同时刻网格对角线平面(x = y平面)上的电场流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Figure 13.  Streamlines and distributions of the electric field on the diagonal plane (x = y plane) with 30° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 14  注入角度为30°的电子束作用下不同时刻电流密度分量剖面图 (a) Jx沿穿过赤道平面中心的y方向线; (b) Jy沿着穿过赤道平面中心的x方向线

    Figure 14.  Profiles of current density components at different time steps under beam injection with an injection angle of 30°: (a) Jx along the y-direction line through the center of the equatorial plane; (b) Jy along the x-direction line through the center of the equatorial plane.

    图 15  注入角为60°的电子束作用下等离子体的电荷密度分布 (a), (c), (e)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的二维空间分布; (b), (d), (f)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的三维空间分布

    Figure 15.  The charge number density distribution of plasma under electron beam injection with an injection angle of 60°: (a), (c), (e) The two-dimensional spatial distribution of t = 1000Δt, t = 8000Δt and t = 20000Δt, respectively; (b), (d), (f) the three-dimensional spatial distributions at t = 1000Δt, t = 8000Δt and t = 20000Δt, respectively.

    图 16  不同电子束注入情形下, 赤道面处主等离子体形成的环形电流分布 (a) 无电子束注入; (b) 以0°入射角入射; (c) 以30°入射角入射; (d) 以60°入射角入射

    Figure 16.  The annular current distribution formed by the main plasma at the equatorial plane under different electron beam injection conditions: (a) Without electron beam injection; (b) incident at an angle of 0°; (c) incident at an angle of 30°; (d) incident at an angle of 60°.

  • [1]

    Levitt B, Maslovsky D, Mauel M E 2005 Phys. Rev. Lett. 94 175002Google Scholar

    [2]

    Baitha A R, Kumar A, Bhattacharjee S 2018 Rev. Sci. Instrum. 89 23503Google Scholar

    [3]

    Saitoh H, Yoshida Z, Morikawa J, Yano Y, Hayashi H, Mizushima T, Kawai Y, Kobayashi M, Mikami H 2010 Phys. Plasmas 17 112111Google Scholar

    [4]

    王敬之, 马新, 项正, 顾旭东, 焦鹿怀, 雷良建, 倪彬彬 2022 物理学报 71 229401Google Scholar

    Wang Z J, Ma X, Xiang Z, Gu X D, Jiao L H, Lei L J, Ni B B 2022 Acta Phys. Sin. 71 229401Google Scholar

    [5]

    朱琪, 马新, 曹兴, 倪彬彬, 项正, 付松, 顾旭东, 张援农 2022 物理学报 71 051101Google Scholar

    Zhu Q, Ma X, Cao X, Ni B B, Xiang Z, Fu S, Gu X D, Zhang Y N 2022 Acta Phys. Sin. 71 051101Google Scholar

    [6]

    常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨 2014 物理学报 63 069401Google Scholar

    Chang S S, Ni B B, Zhao Z Y, Wang F, Li J X, Zhao J J, Gu X D, Zhou C 2014 Acta Phys. Sin. 63 069401Google Scholar

    [7]

    倪彬彬, 赵正予, 顾旭东, 汪枫 2008 物理学报 57 7937Google Scholar

    Ni B B, Zhao Z Y, Gu X D, Wang F 2008 Acta Phys. Sin. 57 7937Google Scholar

    [8]

    顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰 2008 物理学报 57 6673Google Scholar

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673Google Scholar

    [9]

    Korotova G I, Sibeck D G, Tahakashi K, Dai L, Spence H E, Kletzing C A, Wygant J R, Manweiler J W, Moya P S, Hwang K J, Redmon R J 2015 Ann. Geophys. 33 955Google Scholar

    [10]

    Zong Q G, Hao Y Q, Wang Y F 2009 Sci. China Ser. E-Technol. Sci. 52 3698Google Scholar

    [11]

    Zong Q G, Wang Y F, Yang B, Fu S Y, Pu Z Y, Xie L, Fritz T A 2008 Sci. China Ser. E-Technol. Sci. 51 1620Google Scholar

    [12]

    Van Compernolle B, An X, Bortnik J, Thorne R M, Pribyl P, Gekelman W 2015 Phys. Rev. Lett. 114 245002Google Scholar

    [13]

    Chen J, Powis A T, Kaganovich I D, Wang Z B, Yu Y 2025 Phys. Rev. Lett. 135 45301Google Scholar

    [14]

    Nishio K, Mori K, Alpert H S 2025 AIAA Scitech Forum AIAA 2025

    [15]

    Huang H, Wang Z B, Wang X G, Tao X 2018 Chin. Phys. B 27 015201Google Scholar

    [16]

    Huang H, Wang Z B, Wang X G, Tao X. 2019 Phys. Plasmas 26 022106Google Scholar

    [17]

    Xiao Q M, Wang Z B, Wang X G, Xiao C J, Yang X Y, Zheng J X 2017 Plasma Sci. Technol. 19 35301Google Scholar

    [18]

    刘腾, 张国书, 杜俊杰, 杨庆喜, 黄淑龙, 刘云辉 2022 核聚变与等离子体物理 42 271

    Liu T, Zhang G S, Du J J, Yang Q X, Huang S L, Liu Y H 2022 Nucl. Fusion Plasma Phys. 42 271

    [19]

    孙玄, 刘明, 谢锦林, 余羿, 林木楠, 张情 2014 中国科学技术大学学报 44 374

    Sun X, Liu M, Xie J L, Yu Y, Lin M N, Zhang Q 2014 J. Univ. Sci. Technol. China 44 374

    [20]

    Xiao C J, Chen Y H, Yang X Y, Xu T C, Wang L, Xu M, Guo D, Yu Y, Lin C 2016 Rev. Sci. Instrum. 87 11D610Google Scholar

    [21]

    Sun C J, Sang C F, Ye H, Wang Q, Liu H, Wang Z H, Wang H J, Ke R, Wang Y, Zhang Y J, Wang D Z 2021 Fusion Eng. Des. 162 112074Google Scholar

    [22]

    王志斌, 沈炀, 余羿, 陈坚 2024 南方能源建设 11 1

    Wang Z B, Shen Y, Yu Y, Chen J 2024 Southern Energy Construction 11 1

    [23]

    Zhukovsky A, Michael P C, Schultz J H, Smith B A, Minervini J V, Kesner J, Radovinsky A, Garnier D, Mauel M 2005 Fusion Eng. Des. 75–79 29

    [24]

    Saitoh H, Yoshida Z, Morikawa J, Furukawa M, Yano Y, Kawai Y, Kobayashi M, Vogel G, Mikami H 2011 Phys. Plasmas 18 056102Google Scholar

    [25]

    Barnes C W, Jarboe T R, Henins I, Sherwood A R, Knox S O, Gribble R, Hoida H W, Klingner P L, Lilliequist C G, Linford R K, Platts D A, Spencer R L, Tuszewski M 1984 Nucl. Fusion 24 267Google Scholar

    [26]

    Yoshida Z, Ogawa Y, Morikawa J, Watanabe S, Yano Y, Mizumaki S, Tosaka T, Ohtani Y, Hayakawa A, Shibui M 2006 Plasma Fusion Res. 1 8Google Scholar

    [27]

    von der Linden J, Nissl S, Deller A, Singer M, Belmore N, Hugenschmidt C P, Pedersen T S, Saitoh H, Stenson E V 2024 Eur. Phys. J. D 78 146Google Scholar

    [28]

    Deller A, von der Linden J, Ni Ss L S, Michishio K, Oshima N, Higaki H, Stenson E V 2024 Phys. Rev. E 110 L23201

    [29]

    Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, Dargent J, Riconda C, Grech M 2018 Comput. Phys. Commun. 222 351Google Scholar

    [30]

    Sun J, Gao X, Chen L, Lu Q, Tao X, Wang S 2016 Phys. Plasmas 23 22901Google Scholar

    [31]

    Ortner M, Bandeira L G C 2020 SoftwareX 11 100466Google Scholar

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, doi: 10.7498/aps.73.20231733
    [2] Yan Shao-Qi, Gao Ji-Kun, Chen Yue, Ma Yao, Zhu Xiao-Dong. Low-density plasmas generated by electron beams passing through silicon nitride window. Acta Physica Sinica, doi: 10.7498/aps.73.20240302
    [3] Li Xiang-Fu, Zhu Xiao-Lu, Jiang Gang. Plasma screening effect on electron-electron interactions. Acta Physica Sinica, doi: 10.7498/aps.72.20222339
    [4] Zou Xiu, Liu Hui-Ping, Zhang Xiao-Nan, Qiu Ming-Hui. Structure of collisional magnetized plasma sheath with non-extensive distribution of electrons. Acta Physica Sinica, doi: 10.7498/aps.70.20200794
    [5] Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia. Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath. Acta Physica Sinica, doi: 10.7498/aps.68.20190225
    [6] Liang Wen-Long, Wang Yi-Man, Liu Wei, Li Hong-Yi, Wang Jin-Shu. Study of mini-themionic electron sources for vacuum electron THz devices. Acta Physica Sinica, doi: 10.7498/aps.63.057901
    [7] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, doi: 10.7498/aps.63.035203
    [8] Qiu Ming-Hui, Liu Hui-Ping, Zou Xiu. Bohm criterion for a collisinal electronegative plasma sheath in an oblique magnetic field. Acta Physica Sinica, doi: 10.7498/aps.61.155204
    [9] Zou Xiu, Ji Yan-Kun, Zou Bin-Yan. The Bohm criterion for a collisional plasma sheath in an oblique magnetic field. Acta Physica Sinica, doi: 10.7498/aps.59.1902
    [10] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, doi: 10.7498/aps.56.333
    [11] Zhang Yong-Hui, Chang An-Bi, Xiang Fei, Song Fa-Lun, Kang Qiang, Luo Min, Li Ming-Jia, Gong Sheng-Gang. Repetition rate of intense current electron-beam diodes using 20 GW pulsed source. Acta Physica Sinica, doi: 10.7498/aps.56.5754
    [12] Gong Hua-Rong, Gong Yu-Bin, Wei Yan-Yu, Tang Chang-Jian, Xue Dong-Hai, Wang Wen-Xiang. Analysis of ion noise with beam-wave interaction in klystron by two dimensional particle simulation method. Acta Physica Sinica, doi: 10.7498/aps.55.5368
    [13] Li Hong, Su Tie, Ouyang Liang, Wang Hui-Hui, Bai Xiao-Yan, Chen Zhi-Peng, Liu Wan-Dong. Numerical simulation of plasma of large-dimensions produced by injecting electron beam into air. Acta Physica Sinica, doi: 10.7498/aps.55.3506
    [14] Zhang Yong-Hui, Ma Qiao-Sheng, Xiang Fei, Gan Yan-Qing, Chang An-Bi, Liu Zhong, Zhou Chuan-Ming. Transmission technigue of repetition pulse and intense current electron-beam. Acta Physica Sinica, doi: 10.7498/aps.54.3111
    [15] Zou Xiu, Liu Jin-Yuan, Wang Zheng-Xiong, Gong Ye, Liu Yue, Wang Xiao-Gang. Plasma sheath in a magnetic field. Acta Physica Sinica, doi: 10.7498/aps.53.3409
    [16] Zhang Yong-Hui, Jiang Jin-Sheng, Chang An-Bi. Study of the hollow cathode plasma electron-gun. Acta Physica Sinica, doi: 10.7498/aps.52.1676
    [17] Zhang Jun, Zhang Jie, Chen Qing, Peng Lian-Mao, Cang Yu, Wang Huai-Bin, Zhong Jia-Yong. . Acta Physica Sinica, doi: 10.7498/aps.51.1764
    [18] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, doi: 10.7498/aps.51.1326
    [19] Dong Jia-Fu, Tang Nian-Yi, Li Wei, Luo Jun-Lin, Guo Gan-Cheng, Zhong Yun-Ze, Liu Yi, Fu Bing-Zhong, Yao Liang-Ye, Feng Bin-Bin, Qin Yun-Wen. . Acta Physica Sinica, doi: 10.7498/aps.51.2074
    [20] HE BIN, CHANG TIE-QIANG, ZHANG JIA-TAI, XU LIN-BAO. INVESTIGATION OF THE LONGITUDINAL MOTION OF ELECTRONS IN THE PLASMAS WITH ULTRA-INTENSE LASER PULSE. Acta Physica Sinica, doi: 10.7498/aps.50.1939
Metrics
  • Abstract views:  33
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  28 September 2025
  • Accepted Date:  01 December 2025
  • Available Online:  03 December 2025
  • /

    返回文章
    返回