-
The cathode-less miniature electron cyclotron resonance ion thruster (ECRIT) has the advantages of long-life and simple-structure. In the ECRIT ion source, the plasma distribution will affect the beam extraction, and the relative position of the ECR layer determined by the magnetic field structure and the flat-ring antenna together affect the plasma distribution. Due to the sheath, the ions or electrons in the plasma will be accelerated to sputter the surface of wall and induce plasma loss. It is important to investigate the wall currents and plasma characteristics. Therefore, particle-in-cell with Monte Carlo collision (PIC/MCC) model is established in this article to study the influence of the magnetic field structure on the plasma and wall current characteristics of 2-cm ECRIT ion source. The calculation results show that the electrons are confined near the ECR layer of antenna by the magnetic mirror, which leads the plasma to be distributed near the ECR layer. When the ECR layer is located on the upstream side of the flat-ring antenna, the plasma is concentrated between the antenna and magnet rings, and the ion density in front of the grid is lowest, which results in a lower ion beam current extracted from ion source and a lower current on the surface of magnetic ring and antenna. When the ECR layer is located on the downstream side of the flat-ring antenna, the plasma density near the upstream side of the antenna and grid is high, which results in higher ion beam current extracted from the ion source and higher current on the surface of antenna and magnetic ring. The plasma distribution and the total wall current of the ion source are affected weakly by the magnetic field structure. In this magnetic field structure, the ion sputtering on the flat-ring antenna is serious. Although such a magnetic field design can increase the extracted ion beam current, it will shorten the working life of the ion source. In the future, when designing a new thruster, it is necessary to weigh the ion current of extraction and lifetime to select the appropriate magnetic field structure.
-
Keywords:
- electron cyclotron resonance ion thruster /
- magnetic field structure /
- particle-in-cell with Monte Carlo collision simulation /
- surface current
[1] Koizumi H, Kuninaka H 2010 J. Propuls. Power. 26 601Google Scholar
[2] Nishiyama K, Hosoda S, Koizumi H, Shimizu Y, Funaki I, Kuninaka H, Bodendorfer M, Kawaguchi J, Nakata D 2010 Proceeding of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, USA, July 25-28, 2010 p6862
[3] Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar
[4] Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203Google Scholar
[5] Nishiyama K, Hosoda S, Ueno K, Tsukizaki R, Kuninaka H 2016 Trans. JSASS Aerospace Tech. Japan 14 131Google Scholar
[6] Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. Japan 12 19Google Scholar
[7] Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 13Google Scholar
[8] Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronautica 157 425Google Scholar
[9] 汤明杰, 杨涓, 金逸舟, 冯冰冰, 罗立涛 2015 物理学报 64 215202Google Scholar
Tang M J, Yang J, Jin Y Z, Feng B B, Luo L T 2015 Acta Phys. Sin. 64 215202Google Scholar
[10] 孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar
Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. NorthWest Polytechnical Univ. 36 42Google Scholar
[11] Kajimura Y, Kanagawa T, Yamamoto N, Nakashima H 2008 AIP Conf. Proc. 1084 939Google Scholar
[12] Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar
[13] Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 41Google Scholar
[14] Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, USA, July 25–27, 2016 p4946
[15] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar
Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar
[16] Takao Y, Eriguchi K, Ono K, Sugita Y, Koizumi H, Komurasaki K 2014 proceeding of 50th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Cleveland, USA, July 28-30, 2014 p3829
[17] Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)
[18] Nanbu K 2000 IEEE T. Plasma. Sci. 28 971Google Scholar
[19] Weissler G L, Carlson R W 1980 Vacuum Physics and Technology (New York: Academic Press) pp14−18
[20] 迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第374− 375页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp374−375 (in Chinese)
[21] Funaki I 2004 J. Propuls. Power. 20 718Google Scholar
-
表 1 磁场结构参数
Table 1. Magnetic circuit structure parameters.
H1/mm W1/mm H2/mm W2/mm 1号源 5.4 2 5.4 1.65 2号源 5.6 2.7 5.8 1.8 3号源 5.8 3 5.6 1.8 -
[1] Koizumi H, Kuninaka H 2010 J. Propuls. Power. 26 601Google Scholar
[2] Nishiyama K, Hosoda S, Koizumi H, Shimizu Y, Funaki I, Kuninaka H, Bodendorfer M, Kawaguchi J, Nakata D 2010 Proceeding of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, USA, July 25-28, 2010 p6862
[3] Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar
[4] Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203Google Scholar
[5] Nishiyama K, Hosoda S, Ueno K, Tsukizaki R, Kuninaka H 2016 Trans. JSASS Aerospace Tech. Japan 14 131Google Scholar
[6] Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. Japan 12 19Google Scholar
[7] Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 13Google Scholar
[8] Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronautica 157 425Google Scholar
[9] 汤明杰, 杨涓, 金逸舟, 冯冰冰, 罗立涛 2015 物理学报 64 215202Google Scholar
Tang M J, Yang J, Jin Y Z, Feng B B, Luo L T 2015 Acta Phys. Sin. 64 215202Google Scholar
[10] 孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar
Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. NorthWest Polytechnical Univ. 36 42Google Scholar
[11] Kajimura Y, Kanagawa T, Yamamoto N, Nakashima H 2008 AIP Conf. Proc. 1084 939Google Scholar
[12] Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar
[13] Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 41Google Scholar
[14] Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, USA, July 25–27, 2016 p4946
[15] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar
Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar
[16] Takao Y, Eriguchi K, Ono K, Sugita Y, Koizumi H, Komurasaki K 2014 proceeding of 50th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Cleveland, USA, July 28-30, 2014 p3829
[17] Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)
[18] Nanbu K 2000 IEEE T. Plasma. Sci. 28 971Google Scholar
[19] Weissler G L, Carlson R W 1980 Vacuum Physics and Technology (New York: Academic Press) pp14−18
[20] 迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第374− 375页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp374−375 (in Chinese)
[21] Funaki I 2004 J. Propuls. Power. 20 718Google Scholar
Catalog
Metrics
- Abstract views: 6383
- PDF Downloads: 84
- Cited By: 0