-
In this work, non-equilibrium transport processes of the charged particles in a plasma confined between two parallel plates with externally applied electric fields are analyzed with the charged-particle transport of laser-induced plasma as the major research background. The theoretical analyses of the transient responses of the electrons to the externally applied electrostatic fields are conducted under different initial distributions of the plasma parameters including the loss and the oscillation frequency of the electrons in the transient oscillation process, and the critical value of the electron number density for the initial electron temperature effect of the ion transport. The particle-in-cell (PIC) modeling results are consistent well with the theoretical predictions. Based on the preceding results, the PIC simulations of the ion extraction process by imposing a radio-frequency (RF) electric field on the electrostatic field are conducted. The modeling results indicate that there exists an obvious resonance phenomenon in the ion extraction process, in which the ion extraction flux is significantly increased. Under a certain operating condition, the ion extraction time at the RF resonance point is reduced to 5.8% of its original value with only an electrostatic field. Further analysis shows that, on the one hand, the electrons will be heated by the externally applied RF electric field, and thus, the propagation velocity of the ion rarefaction wave will be increased; on the other hand, the electron oscillations will be enhanced, resulting in losing more electrons in the electron oscillation process and a higher plasma potential, which ultimately leads to a higher ion extraction flux and a shorter ion extraction time.
-
Keywords:
- decaying plasma /
- non-equilibrium transport of charged particles /
- electron oscillation /
- theoretical analysis /
- particle-in-cell simulation
[1] Dhayal M, Forder D, Parry K L, Short R D, Bradley J W 2003 Surf. Coat. Technol. 173-174 872Google Scholar
[2] Aleksandrov N L, Anokhin E M, Kindysheva S V, Kirpichnikov A A, Kosarev I N, Nudnova M M, Starikovskaya S M, Starikovskii A Y 2012 Plasma Phys. Rep. 38 179Google Scholar
[3] Khrabrov A V, Kaganovich I D, Chen J, Guo H 2020 Phys. Plasmas 27 123512Google Scholar
[4] Lieberman M A 1989 J. Appl. Phys. 66 2926Google Scholar
[5] Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064Google Scholar
[6] Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 6962Google Scholar
[7] Ogura K, Arisawa T, Shibata T 1992 Jpn. J. Appl. Phys. 31 1485Google Scholar
[8] Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301Google Scholar
[9] Nishio R, Yamada K, Suzuki K, Wakabayashi M 1995 J. Nucl. Sci. Technol. 32 180Google Scholar
[10] Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367Google Scholar
[11] Shibata T, Ogura K 1996 J. Nucl. Sci. Technol. 33 834Google Scholar
[12] Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1997 J. Nucl. Sci. Technol. 34 923Google Scholar
[13] Matsui Tetsuya, Tsuda S, Tsuchida K, Suzuki K, Shoji T 1997 Phys. Plasmas 4 3527Google Scholar
[14] Killian T C, Kulin S, Bergeson S D, Orozco S D, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776Google Scholar
[15] Kulin S, Killian T C, Bergeson S D, Rolston S L 2000 Phys. Rev. Lett. 85 318Google Scholar
[16] Mazevet S, Collins L A, Kress J D 2002 Phys. Rev. Lett. 88 055001Google Scholar
[17] Robicheaux F, Hanson J D 2002 Phys. Rev. Lett. 88 055002Google Scholar
[18] Bergeson S D, Spencer R L 2003 Phys. Rev. E 67 026414Google Scholar
[19] Robicheaux F, Hanson J D 2003 Phys. Plasmas 10 2217Google Scholar
[20] Pohl T, Pattard T, Rost J M 2004 Phys. Rev. Lett. 92 155003Google Scholar
[21] Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Killian T C 2004 Phys. Rev. Lett. 92 143001Google Scholar
[22] Cummings E A, Daily J E, Durfee D S, Bergeson S D 2005 Phys. Rev. Lett. 95 235001Google Scholar
[23] Fletcher R S, Zhang X L, Rolston S L 2006 Phys. Rev. Lett. 96 105003Google Scholar
[24] Zhang X L, Fletcher R S, Rolston S L, Guzdar P N, Swisdak M 2008 Phys. Rev. Lett. 100 235002Google Scholar
[25] Gorman G M, Warrens M K, Bradshaw S J, Killian T C 2021 Phys. Rev. Lett. 126 085002Google Scholar
[26] Sprenkle R T, Bergeson S D, Silvestri L G, Murillo M S 2022 Phys. Rev. E 105 045201Google Scholar
[27] Li H P, Ostrikov K, Sun W T 2018 Phys. Rep. 770–772 1
[28] 李和平, 王鹏, 王鑫, 尤伟, 柴俊杰, 李增耀 2015 高电压技术 41 2825Google Scholar
Li H P, Wang P, Wang X, You W, Chai J J, Li Z Y 2015 High Voltage Eng. 41 2825Google Scholar
[29] 李和平, 王鑫, 柴俊杰, 李占贤 2016 高电压技术 42 706Google Scholar
Li H P, Wang X, Chai J J, Li Z X 2016 High Voltage Eng. 42 706Google Scholar
[30] Wang Y T, Chen J, Li H P, Jiang D J, Zhou M S 2021 Jpn. J. Appl. Phys. 60 SAAB05Google Scholar
[31] Chen J, Khrabrov A V, Wang Y T, Li J, Li H P, Jiang D J, Zhou M S 2020 Plasma Sources Sci. Technol. 29 025010Google Scholar
[32] Chen J, Fu T Z, Guo H, Li H P, Jiang D J, Zhou M S 2019 Plasma Sci. Technol. 21 045402Google Scholar
[33] 陈坚, 李静, 李和平, 姜东君, 周明胜 2020 高电压技术 46 729Google Scholar
Chen J, Li J, Li H P, Jiang D J, Zhou M S 2020 High Voltage Eng. 46 729Google Scholar
[34] Calder A C, Laframboise J G 1990 Phys. Fluids B 2 655Google Scholar
[35] Calder A C, Hulbert G W, Laframboise J G 1993 Phys. Fluids B 5 674Google Scholar
[36] Sydorenko D 2006 Ph. D. Dissertation (Saskatchewan: University of Saskatchewan)
[37] 姜巍 2010 博士学位论文 (大连: 大连理工大学)
Jiang W 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[38] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken: Wiley-Interscience) pp389–394
[39] 熊家贵, 王德武 2000 物理学报 49 2420Google Scholar
Xiong J G, Wang D W 2000 Acta Phys. Sin. 49 2420Google Scholar
[40] Lu X Y, Yuan C, Zhang X Z, Zhang Z Z 2020 Chin. Phys. B 29 045201Google Scholar
[41] 卢肖勇, 袁程, 高阳 2021 物理学报 70 145201Google Scholar
Lu X Y, Yuan C, Gao Y 2021 Acta Phys. Sin. 70 145201Google Scholar
-
图 12 不同射频频率(1—4列分别对应0, 200, 477和800 MHz)下等离子体衰亡过程中电势(a)、离子数密度(b)、电子数密度(c)和电子速度分布函数(d)的时空演化
Figure 12. Spatiotemporal evolutions of the electric potential (a), ion number density (b), electron number density (c) and electron velocity distribution function (d) under different frequencies (columns 1–4 correspond to the frequencies of 0, 200, 477 and 800 MHz, respectively) of the externally applied radio-frequency electric field.
图 13 不同射频电场频率下等离子体衰亡过程中负极板附近(x = 0.01 cm)、正极板附近(x = 1.99 cm)和腔室中心(x = 1.00 cm)处电场随时间的演化曲线
Figure 13. Temporal evolutions of the electric field in the vicinity of the negative electrode (x = 0.01 cm) and the positive electrode (x = 1.99 cm), and the center between electrodes (x = 1.00 cm) under different frequencies of the externally applied radio-frequency electric field.
表 1 典型工况参数
Table 1. List of physical parameters for typical cases studied in this paper.
工况 1 2 3 4 d, L/mm 1, 20 2.5, 20 5, 20 2.5, 20 n0/(1016 m–3) 1.0 1.0 1.0 1.0 Te, Ti/eV 0.5, 0.02 0.5, 0.02 0.5, 0.02 5.0, 0.02 U0/V 300 300 300 300 -
[1] Dhayal M, Forder D, Parry K L, Short R D, Bradley J W 2003 Surf. Coat. Technol. 173-174 872Google Scholar
[2] Aleksandrov N L, Anokhin E M, Kindysheva S V, Kirpichnikov A A, Kosarev I N, Nudnova M M, Starikovskaya S M, Starikovskii A Y 2012 Plasma Phys. Rep. 38 179Google Scholar
[3] Khrabrov A V, Kaganovich I D, Chen J, Guo H 2020 Phys. Plasmas 27 123512Google Scholar
[4] Lieberman M A 1989 J. Appl. Phys. 66 2926Google Scholar
[5] Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064Google Scholar
[6] Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 6962Google Scholar
[7] Ogura K, Arisawa T, Shibata T 1992 Jpn. J. Appl. Phys. 31 1485Google Scholar
[8] Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301Google Scholar
[9] Nishio R, Yamada K, Suzuki K, Wakabayashi M 1995 J. Nucl. Sci. Technol. 32 180Google Scholar
[10] Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367Google Scholar
[11] Shibata T, Ogura K 1996 J. Nucl. Sci. Technol. 33 834Google Scholar
[12] Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1997 J. Nucl. Sci. Technol. 34 923Google Scholar
[13] Matsui Tetsuya, Tsuda S, Tsuchida K, Suzuki K, Shoji T 1997 Phys. Plasmas 4 3527Google Scholar
[14] Killian T C, Kulin S, Bergeson S D, Orozco S D, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776Google Scholar
[15] Kulin S, Killian T C, Bergeson S D, Rolston S L 2000 Phys. Rev. Lett. 85 318Google Scholar
[16] Mazevet S, Collins L A, Kress J D 2002 Phys. Rev. Lett. 88 055001Google Scholar
[17] Robicheaux F, Hanson J D 2002 Phys. Rev. Lett. 88 055002Google Scholar
[18] Bergeson S D, Spencer R L 2003 Phys. Rev. E 67 026414Google Scholar
[19] Robicheaux F, Hanson J D 2003 Phys. Plasmas 10 2217Google Scholar
[20] Pohl T, Pattard T, Rost J M 2004 Phys. Rev. Lett. 92 155003Google Scholar
[21] Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Killian T C 2004 Phys. Rev. Lett. 92 143001Google Scholar
[22] Cummings E A, Daily J E, Durfee D S, Bergeson S D 2005 Phys. Rev. Lett. 95 235001Google Scholar
[23] Fletcher R S, Zhang X L, Rolston S L 2006 Phys. Rev. Lett. 96 105003Google Scholar
[24] Zhang X L, Fletcher R S, Rolston S L, Guzdar P N, Swisdak M 2008 Phys. Rev. Lett. 100 235002Google Scholar
[25] Gorman G M, Warrens M K, Bradshaw S J, Killian T C 2021 Phys. Rev. Lett. 126 085002Google Scholar
[26] Sprenkle R T, Bergeson S D, Silvestri L G, Murillo M S 2022 Phys. Rev. E 105 045201Google Scholar
[27] Li H P, Ostrikov K, Sun W T 2018 Phys. Rep. 770–772 1
[28] 李和平, 王鹏, 王鑫, 尤伟, 柴俊杰, 李增耀 2015 高电压技术 41 2825Google Scholar
Li H P, Wang P, Wang X, You W, Chai J J, Li Z Y 2015 High Voltage Eng. 41 2825Google Scholar
[29] 李和平, 王鑫, 柴俊杰, 李占贤 2016 高电压技术 42 706Google Scholar
Li H P, Wang X, Chai J J, Li Z X 2016 High Voltage Eng. 42 706Google Scholar
[30] Wang Y T, Chen J, Li H P, Jiang D J, Zhou M S 2021 Jpn. J. Appl. Phys. 60 SAAB05Google Scholar
[31] Chen J, Khrabrov A V, Wang Y T, Li J, Li H P, Jiang D J, Zhou M S 2020 Plasma Sources Sci. Technol. 29 025010Google Scholar
[32] Chen J, Fu T Z, Guo H, Li H P, Jiang D J, Zhou M S 2019 Plasma Sci. Technol. 21 045402Google Scholar
[33] 陈坚, 李静, 李和平, 姜东君, 周明胜 2020 高电压技术 46 729Google Scholar
Chen J, Li J, Li H P, Jiang D J, Zhou M S 2020 High Voltage Eng. 46 729Google Scholar
[34] Calder A C, Laframboise J G 1990 Phys. Fluids B 2 655Google Scholar
[35] Calder A C, Hulbert G W, Laframboise J G 1993 Phys. Fluids B 5 674Google Scholar
[36] Sydorenko D 2006 Ph. D. Dissertation (Saskatchewan: University of Saskatchewan)
[37] 姜巍 2010 博士学位论文 (大连: 大连理工大学)
Jiang W 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[38] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken: Wiley-Interscience) pp389–394
[39] 熊家贵, 王德武 2000 物理学报 49 2420Google Scholar
Xiong J G, Wang D W 2000 Acta Phys. Sin. 49 2420Google Scholar
[40] Lu X Y, Yuan C, Zhang X Z, Zhang Z Z 2020 Chin. Phys. B 29 045201Google Scholar
[41] 卢肖勇, 袁程, 高阳 2021 物理学报 70 145201Google Scholar
Lu X Y, Yuan C, Gao Y 2021 Acta Phys. Sin. 70 145201Google Scholar
Catalog
Metrics
- Abstract views: 4848
- PDF Downloads: 99
- Cited By: 0