Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-ray streak camera tube with two photocathodes

Li Jin Yang Pin Yang Zhi-Wen Zhang Xing Liu Shen-Ye Dong Jian-Jun Yang Zheng-Hua Ren Kuan Li Ying-Jie Zhang Lu Hu Xin

Citation:

X-ray streak camera tube with two photocathodes

Li Jin, Yang Pin, Yang Zhi-Wen, Zhang Xing, Liu Shen-Ye, Dong Jian-Jun, Yang Zheng-Hua, Ren Kuan, Li Ying-Jie, Zhang Lu, Hu Xin
PDF
HTML
Get Citation
  • The time-resolved X-ray spectroscopy measurement system based on X-ray streak camera technology is indispensable diagnostic equipment in the study of laser inertial fusion research and high-energy-density physics. However, limited by the effective photocathode length of the X-ray streak tube, the time-resolved spectral measurement system usually used has the shortcomings of narrow spectrum range and poor spectral resolution.In order to overcome the shortcomings, a novel dual-channel streak tube is developed, which consists of a photocathode, a prefocusing electrode group in temporal direction, an electric quadrupole lens electrode group, a main focusing electrode group in temporal direction, a deflector plate, and a phosphor screen. The photocathode has two slits. When X-rays are incident, two electron beams can be emitted simultaneously. The electric quadrupole lens electrode group is composed of 8 arc electrodes. Two electric quadrupole lenses are formed by the 8 arc electrodes in the spatial direction. Two electron beams emitted from the cathode of the streak tube are first accelerated and prefocused by the prefocusing electrode group in the time direction, and then compressed by the main focusing electrode group in the time direction. In the spatial direction, two electron beams are focused by the two electric quadrupole lenses independently. This novel streak tube structure can focus two electron beams at the same time, thereby increasing the effective photocathode length and maintaining the compact structure of streak tube without increasing the aberration.The cathode voltage of the designed streak tube is –12 kV, the distance from cathode to grid is 5 mm, and the cathode-grid field strength is 2.4 kV/mm. The cathode is divided into two sections, the spacing between sections is about 13 mm, the length of each section is more than 20 mm, the magnification of the image converter tube is about 1.56 times, the distance between the cathode and the phosphor screen is 300 mm, and the longest size along the cathode direction is 90 mm. The test results of the performance of the streak tube show that the actual effective cathode length of the developed tube reaches 44 mm, the spatial resolution is better than 15 lp/mm, and the deflection sensitivity is better than 40 mm/kV. The effective cathode and spatial resolution of the tube can be increased to 50 mm and 25 lp/mm by further optimizing the structure of the tube and removing the image intensifier with a high sensitivity image recording system, respectively.
      Corresponding author: Hu Xin, huxin88@sina.com
    • Funds: Project supported by the Presidential Foundation of China Academy of Engineering Physics (Grant Nos. YZJJLX2018011, YZJJLX2019011)
    [1]

    Schirmann D, Mens A, Sauneuf R, et al. 1992 SPIE 1757 139128Google Scholar

    [2]

    Kimbrough J R, Bell P M, Christianson G B, Lee F D, Kalantar D H, Perry T S, Sewall N R, Wootton A J 2001 Rev. Sci. Instrum. 72 748Google Scholar

    [3]

    Pitre V, Magnan S, Kieffera J C, Dorchies F, Sa1 in F, Goulmy C, Rebuffie J C 2004 SPIE 5194 503581Google Scholar

    [4]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [5]

    Lihong N, Qinlao Y, Hanben N, Hua L, Junlan Z 2008 Rev. Sci. Instrum. 79 023103Google Scholar

    [6]

    胡昕, 刘慎业, 丁永坤, 杨勤劳, 田进寿, 何小安 2009 光学学报 29 2871Google Scholar

    Hu X, Liu S Y, Ding Y K, Yang Q L, Tian J S, He X A 2009 Acta Opt. Sin. 29 2871Google Scholar

    [7]

    Opachich Y P, Kalantar D H, MacPhee A G, et al. 2012 Rev. Sci. Instrum. 83 125105Google Scholar

    [8]

    李晋, 胡昕, 杨品, 杨志文, 陈韬, 刘慎业 2013 强激光与粒子束 25 2616

    Li J, Hu X, Yang P, Yang Z W, Chen T, Liu S Y 2013 High Power Laser Part. Beams 25 2616

    [9]

    朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501Google Scholar

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501Google Scholar

    [10]

    MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, Hassett J, et al. 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [11]

    李晋, 杨志文, 胡昕, 张兴, 王峰 2021 红外与激光工程 50 20210402Google Scholar

    Li J, Yang Z W, Hu X, Zhang X, Wang F 2021 Infrared Laser Eng. 50 20210402Google Scholar

    [12]

    Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969Google Scholar

    [13]

    胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447Google Scholar

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar

    [14]

    Cone K V, Dunn J, Schneider M B, Baldis H A, Brown G V, Emig J, James D L, May M J, Park J, Shepherd R, Widmann K 2010 Rev. Sci. Instrum. 81 10E318Google Scholar

    [15]

    Millecchia M, Regan S P, Bahr R E, Romanofsky M, Sorce C 2012 Rev. Sci. Instrum. 83 10E107Google Scholar

    [16]

    Nilson P M, Ehrne F, Mileham C, et al. 2016 Rev. Sci. Instrum. 87 11D504Google Scholar

    [17]

    Stillman C R, Nilson P M, Ivancic S T, Mileham C, Begishev I A, Junquist R K, Nelson D J, Froula D H 2016 Rev. Sci. Instrum. 87 11E302Google Scholar

    [18]

    Benstead J, Moore A S, Ahmed M F, et al. 2016 Rev. Sci. Instrum. 87 055110Google Scholar

    [19]

    Hill K W, Bitter M, Delgado-Aparicio L, et al. 2016 Rev. Sci. Instrum. 87 11E344Google Scholar

    [20]

    Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar

    [21]

    Chen B L, Yang Z H, Wei M X, et al. 2014 Phys. Plasmas 21 122705Google Scholar

    [22]

    Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, Froula D H 2017 Phys. Rev. E 95 063204Google Scholar

    [23]

    Pikuz S A, Shelkovenko T A, Chandler K M, Mitchell M D, Hammer D A, Skobelev I Y, Shlyaptseva A S, Hansen S B 2004 Rev. Sci. Instrum. 10 3666Google Scholar

  • 图 1  双阴极变像管结构 1-光阴极, 2-平板电极I, 3-平板电极II, 4-平板电极III, 5-电四极透镜聚焦组, 6-平板电极IV, 7-平板电极V, 8-平板电极VI, 9-偏转板, 10-荧光屏

    Figure 1.  Structure of dual-cathode streak tube: 1-photocathode, 2-plate electrode I, 3-plate electrode II, 4-plate electrode III, 5-quadrupole lens, 6-plate electrode IV, 7-plate electrode V, 8-plate electrode VI, 9-deflector, 10-screen.

    图 2  电四极透镜结构

    Figure 2.  Structure of quadrupole lens.

    图 3  阴极成像效果(蓝色为阴极发射面电子分布, 红色为像面电子分布)

    Figure 3.  Cathode imaging results (Blue is electron distribution on cathode emission plane, red is electron distribution on image plane).

    图 4  变像管结构 (a) 内部设计结构; (b) 外部结构; (c) 内部实际制作结构

    Figure 4.  Structure of the streak tube: (a) Internal design structure; (b) external structure; (c) actual production structure.

    图 5  变像管性能测试器件排布图

    Figure 5.  Layout of test devices for streak tube performance.

    图 6  耦合像增强器时的空间分辨率测试图像

    Figure 6.  Spatial resolution test image coupled with image intensifier.

    图 7  无像增强器时的空间分辨率测试图像

    Figure 7.  Spatial resolution test image without image intensifier.

    图 8  偏转灵敏度测试图像

    Figure 8.  Deflection sensitivity test image.

  • [1]

    Schirmann D, Mens A, Sauneuf R, et al. 1992 SPIE 1757 139128Google Scholar

    [2]

    Kimbrough J R, Bell P M, Christianson G B, Lee F D, Kalantar D H, Perry T S, Sewall N R, Wootton A J 2001 Rev. Sci. Instrum. 72 748Google Scholar

    [3]

    Pitre V, Magnan S, Kieffera J C, Dorchies F, Sa1 in F, Goulmy C, Rebuffie J C 2004 SPIE 5194 503581Google Scholar

    [4]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [5]

    Lihong N, Qinlao Y, Hanben N, Hua L, Junlan Z 2008 Rev. Sci. Instrum. 79 023103Google Scholar

    [6]

    胡昕, 刘慎业, 丁永坤, 杨勤劳, 田进寿, 何小安 2009 光学学报 29 2871Google Scholar

    Hu X, Liu S Y, Ding Y K, Yang Q L, Tian J S, He X A 2009 Acta Opt. Sin. 29 2871Google Scholar

    [7]

    Opachich Y P, Kalantar D H, MacPhee A G, et al. 2012 Rev. Sci. Instrum. 83 125105Google Scholar

    [8]

    李晋, 胡昕, 杨品, 杨志文, 陈韬, 刘慎业 2013 强激光与粒子束 25 2616

    Li J, Hu X, Yang P, Yang Z W, Chen T, Liu S Y 2013 High Power Laser Part. Beams 25 2616

    [9]

    朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501Google Scholar

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501Google Scholar

    [10]

    MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, Hassett J, et al. 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [11]

    李晋, 杨志文, 胡昕, 张兴, 王峰 2021 红外与激光工程 50 20210402Google Scholar

    Li J, Yang Z W, Hu X, Zhang X, Wang F 2021 Infrared Laser Eng. 50 20210402Google Scholar

    [12]

    Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969Google Scholar

    [13]

    胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447Google Scholar

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar

    [14]

    Cone K V, Dunn J, Schneider M B, Baldis H A, Brown G V, Emig J, James D L, May M J, Park J, Shepherd R, Widmann K 2010 Rev. Sci. Instrum. 81 10E318Google Scholar

    [15]

    Millecchia M, Regan S P, Bahr R E, Romanofsky M, Sorce C 2012 Rev. Sci. Instrum. 83 10E107Google Scholar

    [16]

    Nilson P M, Ehrne F, Mileham C, et al. 2016 Rev. Sci. Instrum. 87 11D504Google Scholar

    [17]

    Stillman C R, Nilson P M, Ivancic S T, Mileham C, Begishev I A, Junquist R K, Nelson D J, Froula D H 2016 Rev. Sci. Instrum. 87 11E302Google Scholar

    [18]

    Benstead J, Moore A S, Ahmed M F, et al. 2016 Rev. Sci. Instrum. 87 055110Google Scholar

    [19]

    Hill K W, Bitter M, Delgado-Aparicio L, et al. 2016 Rev. Sci. Instrum. 87 11E344Google Scholar

    [20]

    Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar

    [21]

    Chen B L, Yang Z H, Wei M X, et al. 2014 Phys. Plasmas 21 122705Google Scholar

    [22]

    Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, Froula D H 2017 Phys. Rev. E 95 063204Google Scholar

    [23]

    Pikuz S A, Shelkovenko T A, Chandler K M, Mitchell M D, Hammer D A, Skobelev I Y, Shlyaptseva A S, Hansen S B 2004 Rev. Sci. Instrum. 10 3666Google Scholar

  • [1] Tian Li-Ping, Shen Ling-bin, Chen Ping, Liu Yu-zhu, Chen Lin, Hui Dan-dan, Chen Xi-ru, Zhao Wei, Xue Yan-hua. 100 fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li. Fringe visibility in X-ray interferometer using dual triangular phase gratings. Acta Physica Sinica, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [3] Tian Li-Ping, Shen Ling-Bin, Chen Ping, Liu Yu-Zhu, Chen Lin, Hui Dan-Dan, Chen Xi-Ru, Zhao Wei, Xue Yan-Hua, Tian Jin-Shou. 100-fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2023, 72(24): 248502. doi: 10.7498/aps.72.20231382
    [4] He Xiao-An, Yang Jia-Min, Li Yu-Kun, Li Jin, Xiong Gang. Theoretical calculation of response sensitivity of CsI photocathode of soft X-ray streak camera. Acta Physica Sinica, 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [5] Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun. Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes. Acta Physica Sinica, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [6] Zhang Wei-Peng, Yang Hong-Lei, Chen Xin-Yi, Wei Hao-Yun, Li Yan. Optical frequency linked dual-comb absorption spectrum measurement. Acta Physica Sinica, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [7] Yuan Zheng, Dong Jian-Jun, Li Jin, Chen Tao, Zhang Wen-Hai, Cao Zhu-Rong, Yang Zhi-Wen, Wang Jing, Zhao Yang, Liu Shen-Ye, Yang Jia-Min, Jiang Shao-En. Calibration of the dynamic spatial resolution of framing image-converter. Acta Physica Sinica, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [8] Hui Dan-Dan, Tian Jin-Shou, Lu Yu, Wang Jun-Feng, Wen Wen-Long, Liang Ling-Liang, Chen Lin. Temporal distortion analysis of the streak tube. Acta Physica Sinica, 2016, 65(15): 158502. doi: 10.7498/aps.65.158502
    [9] Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [10] Deng Wen-Juan, Peng Xin-Cun, Zou Ji-Jun, Jiang Shao-Tao, Guo Dong, Zhang Yi-Jun, Chang Ben-Kang. Resolution characteristic of graded band-gap AlGaAs/GaAs transmission-mode photocathodes. Acta Physica Sinica, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [11] Liu Rong, Tian Jin-Shou, Li Hao, Wang Qiang-Qiang, Wang Chao, Wen Wen-Long, Lu Yu, Liu Hu-Lin, Cao Xi-Bin, Wang Jun-Feng, Xu Xiang-Yan, Wang Xing. Design and evaluation of a pre-traveling wave deflector magnetic solenoid lens focused streak image tube. Acta Physica Sinica, 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [12] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [13] Chen Huo-Yao, Liu Zheng-Kun, Wang Qing-Bo, Yi Tao, Yang Guo-Hong, Hong Yi-Lin, Fu Shao-Jun. Effect of curve groove on the spectral resolution for soft X-ray holographic flat-field gratings. Acta Physica Sinica, 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [14] Dong Jian-Jun, Cao Zhu-Rong, Yang Zheng-Hua, Cheng Bo-Lun, Huang Tian-Xuan, Den Bo, Liu Sheng-Ye, Jiang Shao-En, Ding Yong-Kun, Yi Sheng-Zheng, Mu Bao-Zhong. Measurement of implosion trajectory for hohlraum-radiative-driven. Acta Physica Sinica, 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [15] Zeng Peng, Yuan Zheng, Deng Bo, Yuan Yong-Teng, Li Zhi-Chao, Liu Shen-Ye, Zhao Yi-Dong, Hong Cai-Hao, Zheng Lei, Cui Ming-Qi. Spectral response calibration of Au and CsI transmission photocathodes of X-ray streak camera in a 605500 eV photon energy region. Acta Physica Sinica, 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [16] Yuan Yong-Teng, Hao Yi-Dan, Zhao Zong-Qing, Hou Li-Fei, Miao Wen-Yong. Dynamic range of X-ray streak camera affected by space charge effect. Acta Physica Sinica, 2010, 59(10): 6963-6968. doi: 10.7498/aps.59.6963
    [17] Hu Xin, Jiang Shao-En, Cui Yan-Li, Huang Yi-Xiang, Ding Yong-Kun, Liu Zhong-Li, Yi Rong-Qing, Li Chao-Guang, Zhang Jing-He, Zhang Hua-Quan. A time-resolved three-channel soft X-ray spectrometer. Acta Physica Sinica, 2007, 56(3): 1447-1451. doi: 10.7498/aps.56.1447
    [18] Xie Xu-Dong, Wang Xiao, Zhu Qi-Hua, Zeng Xiao-Ming, Wang Feng-Rui, Huang Xiao-Jun, Zhou Kai-Nan, Wang Fang, Jiang Dong-Bin, Huang Zheng, Sun Li, Liu Hua, Wang Xiao-Dong, Deng Wu, Guo Yi, Zhang Xiao-Mi. High energy chirped pulse characteristics observed by spectral-resolved streak camera. Acta Physica Sinica, 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
    [19] Sun Ke-Xu, Jiang Shao-En, Yi Rong-Qing, Cui Yan-Li, Ding Yong-Kun, Liu Shen-Ye. Research on time characteristics of soft X-ray diode. Acta Physica Sinica, 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [20] Liu Li-Xin, Qu Jun-Le, Lin Zi-Yang, Chen Dan-Ni, Xu Gai-Xia, Hu Tao, Guo Bao-Ping, Niu Han-Ben. Time-resolved two-photon excitation fluorescence spectroscopy. Acta Physica Sinica, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
Metrics
  • Abstract views:  4130
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  17 June 2022
  • Accepted Date:  17 July 2022
  • Available Online:  22 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回