-
The time-resolved X-ray spectroscopy measurement system based on X-ray streak camera technology is indispensable diagnostic equipment in the study of laser inertial fusion research and high-energy-density physics. However, limited by the effective photocathode length of the X-ray streak tube, the time-resolved spectral measurement system usually used has the shortcomings of narrow spectrum range and poor spectral resolution. In order to overcome the shortcomings, a novel dual-channel streak tube is developed, which consists of a photocathode, a prefocusing electrode group in temporal direction, an electric quadrupole lens electrode group, a main focusing electrode group in temporal direction, a deflector plate, and a phosphor screen. The photocathode has two slits. When X-rays are incident, two electron beams can be emitted simultaneously. The electric quadrupole lens electrode group is composed of 8 arc electrodes. Two electric quadrupole lenses are formed by the 8 arc electrodes in the spatial direction. Two electron beams emitted from the cathode of the streak tube are first accelerated and prefocused by the prefocusing electrode group in the time direction, and then compressed by the main focusing electrode group in the time direction. In the spatial direction, two electron beams are focused by the two electric quadrupole lenses independently. This novel streak tube structure can focus two electron beams at the same time, thereby increasing the effective photocathode length and maintaining the compact structure of streak tube without increasing the aberration. The cathode voltage of the designed streak tube is –12 kV, the distance from cathode to grid is 5 mm, and the cathode-grid field strength is 2.4 kV/mm. The cathode is divided into two sections, the spacing between sections is about 13 mm, the length of each section is more than 20 mm, the magnification of the image converter tube is about 1.56 times, the distance between the cathode and the phosphor screen is 300 mm, and the longest size along the cathode direction is 90 mm. The test results of the performance of the streak tube show that the actual effective cathode length of the developed tube reaches 44 mm, the spatial resolution is better than 15 lp/mm, and the deflection sensitivity is better than 40 mm/kV. The effective cathode and spatial resolution of the tube can be increased to 50 mm and 25 lp/mm by further optimizing the structure of the tube and removing the image intensifier with a high sensitivity image recording system, respectively. -
Keywords:
- X-ray streak camera /
- streak tube /
- time-resolved spectrum diagnosis /
- two cathodes
[1] Schirmann D, Mens A, Sauneuf R, et al. 1992 SPIE 1757 139128Google Scholar
[2] Kimbrough J R, Bell P M, Christianson G B, Lee F D, Kalantar D H, Perry T S, Sewall N R, Wootton A J 2001 Rev. Sci. Instrum. 72 748Google Scholar
[3] Pitre V, Magnan S, Kieffera J C, Dorchies F, Sa1 in F, Goulmy C, Rebuffie J C 2004 SPIE 5194 503581Google Scholar
[4] Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102Google Scholar
[5] Lihong N, Qinlao Y, Hanben N, Hua L, Junlan Z 2008 Rev. Sci. Instrum. 79 023103Google Scholar
[6] 胡昕, 刘慎业, 丁永坤, 杨勤劳, 田进寿, 何小安 2009 光学学报 29 2871Google Scholar
Hu X, Liu S Y, Ding Y K, Yang Q L, Tian J S, He X A 2009 Acta Opt. Sin. 29 2871Google Scholar
[7] Opachich Y P, Kalantar D H, MacPhee A G, et al. 2012 Rev. Sci. Instrum. 83 125105Google Scholar
[8] 李晋, 胡昕, 杨品, 杨志文, 陈韬, 刘慎业 2013 强激光与粒子束 25 2616
Li J, Hu X, Yang P, Yang Z W, Chen T, Liu S Y 2013 High Power Laser Part. Beams 25 2616
[9] 朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501Google Scholar
Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501Google Scholar
[10] MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, Hassett J, et al. 2016 Rev. Sci. Instrum. 87 11E202Google Scholar
[11] 李晋, 杨志文, 胡昕, 张兴, 王峰 2021 红外与激光工程 50 20210402Google Scholar
Li J, Yang Z W, Hu X, Zhang X, Wang F 2021 Infrared Laser Eng. 50 20210402Google Scholar
[12] Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969Google Scholar
[13] 胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447Google Scholar
Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar
[14] Cone K V, Dunn J, Schneider M B, Baldis H A, Brown G V, Emig J, James D L, May M J, Park J, Shepherd R, Widmann K 2010 Rev. Sci. Instrum. 81 10E318Google Scholar
[15] Millecchia M, Regan S P, Bahr R E, Romanofsky M, Sorce C 2012 Rev. Sci. Instrum. 83 10E107Google Scholar
[16] Nilson P M, Ehrne F, Mileham C, et al. 2016 Rev. Sci. Instrum. 87 11D504Google Scholar
[17] Stillman C R, Nilson P M, Ivancic S T, Mileham C, Begishev I A, Junquist R K, Nelson D J, Froula D H 2016 Rev. Sci. Instrum. 87 11E302Google Scholar
[18] Benstead J, Moore A S, Ahmed M F, et al. 2016 Rev. Sci. Instrum. 87 055110Google Scholar
[19] Hill K W, Bitter M, Delgado-Aparicio L, et al. 2016 Rev. Sci. Instrum. 87 11E344Google Scholar
[20] Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar
[21] Chen B L, Yang Z H, Wei M X, et al. 2014 Phys. Plasmas 21 122705Google Scholar
[22] Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, Froula D H 2017 Phys. Rev. E 95 063204Google Scholar
[23] Pikuz S A, Shelkovenko T A, Chandler K M, Mitchell M D, Hammer D A, Skobelev I Y, Shlyaptseva A S, Hansen S B 2004 Rev. Sci. Instrum. 10 3666Google Scholar
-
图 1 双阴极变像管结构 1-光阴极, 2-平板电极I, 3-平板电极II, 4-平板电极III, 5-电四极透镜聚焦组, 6-平板电极IV, 7-平板电极V, 8-平板电极VI, 9-偏转板, 10-荧光屏
Figure 1. Structure of dual-cathode streak tube: 1-photocathode, 2-plate electrode I, 3-plate electrode II, 4-plate electrode III, 5-quadrupole lens, 6-plate electrode IV, 7-plate electrode V, 8-plate electrode VI, 9-deflector, 10-screen.
-
[1] Schirmann D, Mens A, Sauneuf R, et al. 1992 SPIE 1757 139128Google Scholar
[2] Kimbrough J R, Bell P M, Christianson G B, Lee F D, Kalantar D H, Perry T S, Sewall N R, Wootton A J 2001 Rev. Sci. Instrum. 72 748Google Scholar
[3] Pitre V, Magnan S, Kieffera J C, Dorchies F, Sa1 in F, Goulmy C, Rebuffie J C 2004 SPIE 5194 503581Google Scholar
[4] Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102Google Scholar
[5] Lihong N, Qinlao Y, Hanben N, Hua L, Junlan Z 2008 Rev. Sci. Instrum. 79 023103Google Scholar
[6] 胡昕, 刘慎业, 丁永坤, 杨勤劳, 田进寿, 何小安 2009 光学学报 29 2871Google Scholar
Hu X, Liu S Y, Ding Y K, Yang Q L, Tian J S, He X A 2009 Acta Opt. Sin. 29 2871Google Scholar
[7] Opachich Y P, Kalantar D H, MacPhee A G, et al. 2012 Rev. Sci. Instrum. 83 125105Google Scholar
[8] 李晋, 胡昕, 杨品, 杨志文, 陈韬, 刘慎业 2013 强激光与粒子束 25 2616
Li J, Hu X, Yang P, Yang Z W, Chen T, Liu S Y 2013 High Power Laser Part. Beams 25 2616
[9] 朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501Google Scholar
Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501Google Scholar
[10] MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, Hassett J, et al. 2016 Rev. Sci. Instrum. 87 11E202Google Scholar
[11] 李晋, 杨志文, 胡昕, 张兴, 王峰 2021 红外与激光工程 50 20210402Google Scholar
Li J, Yang Z W, Hu X, Zhang X, Wang F 2021 Infrared Laser Eng. 50 20210402Google Scholar
[12] Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969Google Scholar
[13] 胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447Google Scholar
Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar
[14] Cone K V, Dunn J, Schneider M B, Baldis H A, Brown G V, Emig J, James D L, May M J, Park J, Shepherd R, Widmann K 2010 Rev. Sci. Instrum. 81 10E318Google Scholar
[15] Millecchia M, Regan S P, Bahr R E, Romanofsky M, Sorce C 2012 Rev. Sci. Instrum. 83 10E107Google Scholar
[16] Nilson P M, Ehrne F, Mileham C, et al. 2016 Rev. Sci. Instrum. 87 11D504Google Scholar
[17] Stillman C R, Nilson P M, Ivancic S T, Mileham C, Begishev I A, Junquist R K, Nelson D J, Froula D H 2016 Rev. Sci. Instrum. 87 11E302Google Scholar
[18] Benstead J, Moore A S, Ahmed M F, et al. 2016 Rev. Sci. Instrum. 87 055110Google Scholar
[19] Hill K W, Bitter M, Delgado-Aparicio L, et al. 2016 Rev. Sci. Instrum. 87 11E344Google Scholar
[20] Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar
[21] Chen B L, Yang Z H, Wei M X, et al. 2014 Phys. Plasmas 21 122705Google Scholar
[22] Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, Froula D H 2017 Phys. Rev. E 95 063204Google Scholar
[23] Pikuz S A, Shelkovenko T A, Chandler K M, Mitchell M D, Hammer D A, Skobelev I Y, Shlyaptseva A S, Hansen S B 2004 Rev. Sci. Instrum. 10 3666Google Scholar
Catalog
Metrics
- Abstract views: 3807
- PDF Downloads: 60
- Cited By: 0