Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical frequency linked dual-comb absorption spectrum measurement

Zhang Wei-Peng Yang Hong-Lei Chen Xin-Yi Wei Hao-Yun Li Yan

Citation:

Optical frequency linked dual-comb absorption spectrum measurement

Zhang Wei-Peng, Yang Hong-Lei, Chen Xin-Yi, Wei Hao-Yun, Li Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Dual-comb spectroscopy is becoming a highlighted topic in broadband spectrum measurement techniques because of two outstanding advantages. One is its highly stable output frequency, which leads to an appealing resolution, and the other is the omitting of moving parts, which helps achieve extreme fast sampling rate. Utilizing the traditional radio frequency linked combs, however, obstructs the dual-comb spectroscopy reaching satisfied performance because the phase noise of the radio frequency standard causes the dual-comb mutual coherence to severely degrade. Specifically, traditional frequency comb stabilizes the carrier envelope offset at a radio frequency by a self-reference system, and the order number of each output comb tooth is over a hundred thousand. Thus, the phase noise of the radio frequency reference is significantly multiplied in output optical frequency by the same order of magnitude as the tooth order number. In this paper, we demonstrate an optical frequency linked dual-comb spectrometer where the two combs are locked to a common narrow linewidth laser. In this configuration, the two combs are synchronized at an identical optical frequency, which means that the carrier envelope offset of the two combs are changed to an optical frequency and the order number of the output comb teeth are reduced by two orders of magnitude. Therefore, not only the complex and costly self-reference system can be removed but also the phase noise of the optical frequency of each comb tooth is effectively reduced, which leads to lower mutual frequency jitters and better mutual coherence. To prove the performance, we measure the 1+3 P branch of 13C2H2 molecular and the results accord well with the reported line positions and reveals a spectral resolution of 0.086 cm-1. The average signal-to-noise ratio exceeds 200:1 (62.5 ms, 100 times on average) and the noise equivalent coefficient is 6.0106 cm-1Hz-1/2. This work provides a solution for pragmatic dual-comb spectroscopy with high resolution and low-cost configuration.
      Corresponding author: Wei Hao-Yun, luckiwei@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2013YQ47067502) and the National Natural Science Foundation of China (Grant No. 61775114).
    [1]

    Newbury N 2011 Nat. Photon. 5 186

    [2]

    Coddington I, Swann W, Newbury N 2009 Nat. Photon. 3 351

    [3]

    Giorgetta F, Swann W, Sinclair S, Baumann E, Conddington I, Newbury N 2013 Nat. Photon. 7 434

    [4]

    Lomsadze B, Cundiff S 2017 Sci. Rep. 7 14018

    [5]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [6]

    Coddington I, Swan W, Newbury N 2008 Phys. Rev. Lett. 100 013902

    [7]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Picqu N 2009 Nat. Photon. 4 55

    [8]

    Baumann E, Giorgetta F, Swann W, Zolot A, Coddington I, Newbury N 2011 Phys. Rev. A 84 062513

    [9]

    Ideguchi T, Poisson A, Guelachvili G, Picqu N, Hnsch T 2014 Nat. Commun. 5 3375

    [10]

    Cassinerio M, Gambetta A, Coluccelli N, Laporta P, Galzerano G 2014 Appl. Phys. Lett. 104 231102

    [11]

    Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong F 2015 Appl. Phys. Express 8 082402

    [12]

    Coddington I, Newbury N, Swann W 2016 Optica 3 414

    [13]

    Yang H, Wei H, Zhang H, Chen K, Li Y, Smolski V, Vodopyanov K 2016 Appl. Opt. 55 6321

    [14]

    Yang H L, Wei H Y, Li Y, Ren L B, Zhang H Y 2014 Spectroscopy and Spectral Analysis 34 335 (in Chinese) [杨宏雷, 尉昊赟, 李岩, 任利兵, 张弘元 2014 光谱学与光谱分析 34 335]

    [15]

    Yang H, Wu X, Zhang H, Zhao S, Yang L, Wei H, Li Y 2016 Appl. Opt. 55 D29

    [16]

    Yang H, Wei H, Li Y 2016 Chin. Phys. B 25 044207

    [17]

    Thorpe J, Ye J 2008 Appl. Phys. B 91 397

    [18]

    Adler F, Thorpe J, Kevin C 2010 Ann. Rev. Anal. Chem. 3 175

    [19]

    Foltynowicz A, Masłowski P, Fleisher A, Bjork B, Ye J 2012 Appl. Phys. B 110 163

    [20]

    Khodabakhsh A, Alrahman C, Foltynowicz A 2014 Opt. Lett. 39 5034

    [21]

    Hodges T, Layer P, Miller W 2004 Rev. Sci. Instrum. 75 849

    [22]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radat. Transfer. 154 35

    [23]

    Ball S, Povey I, Norton E, Jones R 2011 Chem. Phys. Lett. 342 113

    [24]

    Thorpe M, Moll K, Jones R, Safdi B, Ye J 2006 Science 311 1595

    [25]

    Edwards C, Margolis H, Barwood G, Lea S, Gill P, Rowley W 2005 Appl. Phys. B 80 977

    [26]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler R, Hall J, Cundiff S 2000 Science 288 635

    [27]

    Foltynowicz A, Masłowski P, Ban T, Adler F, Cossel K, Briles T, Ye J 2011 Faraday Discuss. 150 23

    [28]

    Rubiola E 2009 Phase Noise and Frequency Stability in Oscillators (Cambridge: Cambridge University Press) pp29-30

  • [1]

    Newbury N 2011 Nat. Photon. 5 186

    [2]

    Coddington I, Swann W, Newbury N 2009 Nat. Photon. 3 351

    [3]

    Giorgetta F, Swann W, Sinclair S, Baumann E, Conddington I, Newbury N 2013 Nat. Photon. 7 434

    [4]

    Lomsadze B, Cundiff S 2017 Sci. Rep. 7 14018

    [5]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [6]

    Coddington I, Swan W, Newbury N 2008 Phys. Rev. Lett. 100 013902

    [7]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Picqu N 2009 Nat. Photon. 4 55

    [8]

    Baumann E, Giorgetta F, Swann W, Zolot A, Coddington I, Newbury N 2011 Phys. Rev. A 84 062513

    [9]

    Ideguchi T, Poisson A, Guelachvili G, Picqu N, Hnsch T 2014 Nat. Commun. 5 3375

    [10]

    Cassinerio M, Gambetta A, Coluccelli N, Laporta P, Galzerano G 2014 Appl. Phys. Lett. 104 231102

    [11]

    Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong F 2015 Appl. Phys. Express 8 082402

    [12]

    Coddington I, Newbury N, Swann W 2016 Optica 3 414

    [13]

    Yang H, Wei H, Zhang H, Chen K, Li Y, Smolski V, Vodopyanov K 2016 Appl. Opt. 55 6321

    [14]

    Yang H L, Wei H Y, Li Y, Ren L B, Zhang H Y 2014 Spectroscopy and Spectral Analysis 34 335 (in Chinese) [杨宏雷, 尉昊赟, 李岩, 任利兵, 张弘元 2014 光谱学与光谱分析 34 335]

    [15]

    Yang H, Wu X, Zhang H, Zhao S, Yang L, Wei H, Li Y 2016 Appl. Opt. 55 D29

    [16]

    Yang H, Wei H, Li Y 2016 Chin. Phys. B 25 044207

    [17]

    Thorpe J, Ye J 2008 Appl. Phys. B 91 397

    [18]

    Adler F, Thorpe J, Kevin C 2010 Ann. Rev. Anal. Chem. 3 175

    [19]

    Foltynowicz A, Masłowski P, Fleisher A, Bjork B, Ye J 2012 Appl. Phys. B 110 163

    [20]

    Khodabakhsh A, Alrahman C, Foltynowicz A 2014 Opt. Lett. 39 5034

    [21]

    Hodges T, Layer P, Miller W 2004 Rev. Sci. Instrum. 75 849

    [22]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radat. Transfer. 154 35

    [23]

    Ball S, Povey I, Norton E, Jones R 2011 Chem. Phys. Lett. 342 113

    [24]

    Thorpe M, Moll K, Jones R, Safdi B, Ye J 2006 Science 311 1595

    [25]

    Edwards C, Margolis H, Barwood G, Lea S, Gill P, Rowley W 2005 Appl. Phys. B 80 977

    [26]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler R, Hall J, Cundiff S 2000 Science 288 635

    [27]

    Foltynowicz A, Masłowski P, Ban T, Adler F, Cossel K, Briles T, Ye J 2011 Faraday Discuss. 150 23

    [28]

    Rubiola E 2009 Phase Noise and Frequency Stability in Oscillators (Cambridge: Cambridge University Press) pp29-30

  • [1] Zhao Han-Yu, Cao Shi-Ying, Dai Shao-Yang, Yang Tao, Zuo Ya-Ni, Hu Ming-Lie. Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology. Acta Physica Sinica, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong. Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection. Acta Physica Sinica, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [3] Ding Yong-Jin, Cao Shi-Ying, Lin Bai-Ke, Wang Qiang, Han Yi, Fang Zhan-Jun. Method of adjusting carrier-envelope offset frequency based on electro-optic-crystal Mach-Zehnder interferometer. Acta Physica Sinica, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [4] Liang Xu, Lin Jia-Rui, Wu Teng-Fei, Zhao Hui, Zhu Ji-Gui. Absolute distance measurement using cross correlation interferometer with a repetition rate multiplication frequency comb. Acta Physica Sinica, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [5] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [6] Rao Bing-Jie, Zhang Pan, Li Ming-Kun, Yang Xi-Guang, Yan Lu-Lu, Chen Xin, Zhang Shou-Gang, Zhang Yan-Yan, Jiang Hai-Feng. Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy. Acta Physica Sinica, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [7] Xia Wen-Ze, Liu Yang, He Ming-Zhao, Cao Shi-Ying, Yang Wei-Lei, Zhang Fu-Min, Miao Dong-Jing, Li Jian-Shuang. Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system. Acta Physica Sinica, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [8] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [9] Zheng Li, Liu Han, Wang Hui-Bo, Wang Ge-Yang, Jiang Jian-Wang, Han Hai-Nian, Zhu Jiang-Feng, Wei Zhi-Yi. Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet. Acta Physica Sinica, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [10] Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min. Method of measuring absolute distance based on spectral interferometry using an electro-optic comb. Acta Physica Sinica, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [11] Chen Jia-Wei, Wang Jin-Dong, Qu Xing-Hua, Zhang Fu-Min. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method. Acta Physica Sinica, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [12] Peng Bo, Qu Xing-Hua, Zhang Fu-Min, Zhang Tian-Yu, Zhang Tie-Li, Liu Xiao-Xu, Xie Yang. Absolute distance measurement based on asymmetric cross-correlation of femtosecond pulse. Acta Physica Sinica, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [13] Wu Yue-Long, Li Rui, Rui Yang, Jiang Hai-Feng, Wu Hai-Bin. Precise measurement of 6Li transition frequencies and hyperfine splitting. Acta Physica Sinica, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [14] Cai Qi-Sheng,  Huang Min,  Han Wei,  Liu Yi-Xuan,  Lu Xiang-Ning. Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy. Acta Physica Sinica, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [15] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [16] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua. Spectral interferometry based absolute distance measurement using frequency comb. Acta Physica Sinica, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [17] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Xing Shu-Jian, Qu Xing-Hua. A new method of measuring absolute distance by using optical frequency comb. Acta Physica Sinica, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] Wang Nan, Han Hai-Nian, Li De-Hua, Wei Zhi-Yi. Spatial dispersion of pulse shaping system with high resolution based on the frequency comb. Acta Physica Sinica, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [19] Zang Hua-Ping, Cao Lei-Feng, Wang Chuan-Ke, Jiang Gang, Wei Lai, Fan Wei, Zhou Wei-Min, Gu Yu-Qiu. Numeric simulation of the diffraction pattern of zigzag grating. Acta Physica Sinica, 2011, 60(3): 034215. doi: 10.7498/aps.60.034215
    [20] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
Metrics
  • Abstract views:  8499
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2018
  • Accepted Date:  08 February 2018
  • Published Online:  05 May 2018

/

返回文章
返回