Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet

Zheng Li Liu Han Wang Hui-Bo Wang Ge-Yang Jiang Jian-Wang Han Hai-Nian Zhu Jiang-Feng Wei Zhi-Yi

Citation:

Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet

Zheng Li, Liu Han, Wang Hui-Bo, Wang Ge-Yang, Jiang Jian-Wang, Han Hai-Nian, Zhu Jiang-Feng, Wei Zhi-Yi
PDF
HTML
Get Citation
  • Femtosecond optical frequency combs have revolutionized the precision measurement of optical frequency and ultrafast science. Furthermore, the frequency combs expended to extreme ultraviolet (XUV) wavelength could provide an effective tool in attosecond pulse generation, nonlinear optics in ultraviolet, spectroscopy of electronic transitions and experiment of quantum electrodynamics. XUV femtosecond optical frequency combs need to be indirectly obtained by means of high-harmonic generation (HHG) drived by femtosecond pulses with high-repetition rate and extremely high peak power. In this review, firstly, the generation principle and the driving laser source requirements of femtosecond pulses generation in XUV spectral range are introduced. Basing on the requirements of driving laser sources, the several femtosecond laser amplification techniques are described, such as chirped pulse amplification (CPA), optical parametric chirped pulse amplification (OPCPA), double cladding pumped fiber amplifier and femtosecond enhancement cavity (fsEC). Meanwhile, the relative merits and applicability of which for XUV femtosecond optical frequency combs generation are compared. Secondly, in the HHG process, the XUV is generated collinearly or non-collinearly with the optical driving field. For the collinear generation process, one of the fundamental challenges is the design of a high-efficiency XUV output coupler. Here, three methods for out-coupling the XUV are expounded. Also, the theory of non-collinear XUV generation is mentioned. Finally, some typical research progress of XUV femtosecond optical frequency combs generation based on fsEC, OPCPA and femtosecond oscillators are reviewed respectively, as well as the current problems that need to be optimized are summarized.
      Corresponding author: Han Hai-Nian, hnhan@iphy.ac.cn ; Zhu Jiang-Feng, jfzhu@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774277, 60808007), the Fundamental Research Funds for the Central Universities (Grant Nos.JB190501, ZD2006), and the Natural Science Basic Research Program of Shaanxi, China (Grant No.2019JCW-03)
    [1]

    Eckstein J N, Ferguson A I, Hänsch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [2]

    Baird K M, Evenson K M, Hanes G R, Jennings D A, Petersen F R 1979 Opt. Lett. 4 263Google Scholar

    [3]

    Layer H P, Rowley W R C, Marx B R 1981 Opt. Lett. 6 188Google Scholar

    [4]

    Pollock C R, Jennings D A, Petersen F R, Wells J S, Drullinger R E, Beaty E C, Evenson K M 1983 Opt. Lett. 8 133Google Scholar

    [5]

    Jennings D A, Pollock C R, Petersen F R, Drullinger R E, Evenson K M, Wells J S, Hall J L, Layer H P 1983 Opt. Lett. 8 136Google Scholar

    [6]

    Ma L, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers S, Oates C W, Hollberg L, Diddams S A 2004 Science 303 1843Google Scholar

    [7]

    Merkt F, Softley T P 1992 Chem. Phys. 96 4149

    [8]

    Herrmann M, Haas M D, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knunz S, Kolachevsky N, Schussler H A, Hänsch T W, Udem T 2009 Phys. Rev. A. 79 052505Google Scholar

    [9]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S E 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [10]

    Eyler E E, Chieda D E, Stowe M C, Thorpe M J, Rschibi T R, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [11]

    Peik E, Tamm C 2003 Europhys. Lett. 61 181Google Scholar

    [12]

    Rellergert W G, Demille D, Greco R, Hehlen M P, Torgerson, J R, Hudson E R 2010 Phys. Rev. Lett. 104 200802Google Scholar

    [13]

    Campbell C J, Radnaev A G, Kuzmich A 2011 Phys. Rev. Lett. 106 223001Google Scholar

    [14]

    Murphy M T, Webb J K, Flambaum V V 2003 Mon. Not. R. Astron. Soc. 345 609Google Scholar

    [15]

    Berengut J C, Dzuba V A, Flambaum V V, Ong A 2011 Phys. Rev. Lett. 106 210802Google Scholar

    [16]

    Mcpherson A, Gibson G N, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B. 4 595Google Scholar

    [17]

    Ferray M, Lhuillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B-AT Mol. Opt. 21 L31Google Scholar

    [18]

    Lhuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [19]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766Google Scholar

    [20]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [21]

    Popmintchev T, Chen M, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S E, Gaeta A L, Hernandezgarcia C, Plaja L, Becker A, Jaronbecker A, Mumane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [22]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [23]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [24]

    Ross I N, Matousek P, Towrie M, Langley A J, Collier J L 1997 Opt. Commun. 144 125Google Scholar

    [25]

    Mears R J, Reekie L, Poole S B, Payne D N 1985 Electron. Lett. 21 738Google Scholar

    [26]

    Mears R J, Reekie L, Poole S B, Payne D N 1986 Electron. Lett. 22 159Google Scholar

    [27]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Optical Fiber Communication Conference Reno, United States, 19 January, 1987 pWI2

    [28]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Electron. Lett. 23 1026Google Scholar

    [29]

    Desurvire E, Simpson J R, Becker P C 1987 Opt. Lett. 12 888Google Scholar

    [30]

    Snitzer E, Po H, Hakimi F, Tumminelli R P, Mccollum B C 1988 Optical Fiber Sensors New Orleans, United States, 27 January, 1988 pPD5

    [31]

    Po H, Snitzer E, Tumminelli R P, Zenteno L, Hakimi F, Cho N M, Haw T 1989 Optical Fiber Communication Conference Houston, United States, 6 February, 1989 pPD7

    [32]

    Jones R J, Ye J 2002 Opt. Lett. 27 1848Google Scholar

    [33]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [34]

    Zimmermann C, Vuletic V, Hemmerich A, Hänsch T W 1995 Appl. Phys. Lett. 66 2318Google Scholar

    [35]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B. 24 576Google Scholar

    [36]

    Jones R J, Ye J 2004 Opt. Lett. 29 2812Google Scholar

    [37]

    Jones R J, Thomann I, Ye J 2004 Phys. Rev. A. 69 051803Google Scholar

    [38]

    Devoe R G, Fabre C, Jungmann K, Hoffnagle J A, Brewer R G 1988 Phys. Rev. A. 37 1802Google Scholar

    [39]

    Moll K D, Jones R J, Ye J 2005 Opt. Express 13 1672Google Scholar

    [40]

    韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206Google Scholar

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206Google Scholar

    [41]

    Pupeza I, Fill E E, Krausz F 2011 Opt. Express 19 12108Google Scholar

    [42]

    Mills A K, Hammond T J, Lam M H, Jones D J 2012 J. Phys. B 45 142001Google Scholar

    [43]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [44]

    Gohle C, Udem T, Rauschenberger J, Holzwarth R, Herrmann M G, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [45]

    Lee J, Carlson D R, Jones R J 2011 Opt. Express 19 23315Google Scholar

    [46]

    Yost D C, Schibli T R, Ye J 2008 Opt. Lett. 33 1099Google Scholar

    [47]

    Yost D C, Cingoz A, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2011 Opt. Express 19 23483Google Scholar

    [48]

    Yang Y, Susmann F, Zherebtsov S, Pupeza I, Kaster J, Lehr D, Fuchs H J, Kley E, Fill EE, Duan X, Zhao Z S, Krausz F, Stebbings S L, Kling, M. F 2011 Opt. Express 19 1954Google Scholar

    [49]

    Moll K D, Jones R J, Ye J 2006 Opt. Express 14 8189Google Scholar

    [50]

    Weitenberg J, Rusbuldt P, Eidam T, Pupeza I 2011 Opt. Express 19 9551Google Scholar

    [51]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Russbueldt P, Rauschenberger J, Limpert J, Udem T, Tuennermann A, Hänsch T W, Apolonskiy A, Krausz F, Fi ll, E. E 2013 Nat. Photonics 7 608Google Scholar

    [52]

    Paschotta, R 2006 Opt. Express 14 6069Google Scholar

    [53]

    Lhuillier A, Balcou P, Candel S, Schafer K J, Kulander K C 1992 Phys. Rev. A. 46 2778Google Scholar

    [54]

    Wu J, Zeng H 2007 Opt. Lett. 32 3315Google Scholar

    [55]

    Ozawa A, Vernaleken A, Schneider W, Gotlibovych I, Udem T, Hänsch T W 2008 Opt. Express 16 6233Google Scholar

    [56]

    Fomichev S V, Breger P, Carre B, Agostini P, Zaretsky D F 2002 Laser Phys. 12 383

    [57]

    Ozawa A, Vernaleken A, Gotlibovych I, Hommelhoff P, Udem T, Hänsch T W 2010 Proceedings of Spie the International Society for Optical Engineering Brussels, Belgium, 4 June, 2010 p7728

    [58]

    Allison T K, Cingoz A, Yost D C, Ye J 2011 Phys. Rev. Lett. 107 183903Google Scholar

    [59]

    Carlson D R, Lee J, Mongelli J, Wright E M, Jones R J 2011 Opt. Lett. 36 2991Google Scholar

    [60]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015Google Scholar

    [61]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tunnermann A 2010 Opt. Lett. 35 94Google Scholar

    [62]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [63]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [64]

    Pupeza I, Eidam T, Rauschenberger J, Bernhardt B, Ozawa A, Fill E E, Apolonski A, Udem T, Limpert J, Alahmed Z A, Azzeer A M, Tunnermann A, Hänsch T W, Krausz, F 2010 Opt. Lett. 35 2052Google Scholar

    [65]

    Hao Q, Li W X, Zeng H P 2009 Opt. Express 17 5815Google Scholar

    [66]

    Bernhardt B, Ozawa A, Pupeza I, Vernaleken A, Kobayashi Y, Holzwarth R, Fill E E, Krausz F, Hänsch T W, Udem T 2011 Quantum Electronics and Laser Science Conference Baltimore, United States, 1–6 May, 2011 pQTuF3

    [67]

    Ditmire T, Crane J K, Nguyen H, Dasilva L B, Perry 1995 Phys. Rev. A. 51 R902Google Scholar

    [68]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [69]

    Pupeza I, Holzberger S, Eidam T, Esser D, Weitenberg J, Carstens H, Rusbuldt P, Limpert J, Udem T, Tunnermann A, Hänsch T W, Krausz F, Fill E E 2013 The European Physical Journal Conferences, Brussels, Belgium, 4 June, 2013 p10023

    [70]

    Carstens H, Högner M, Saule T, Holzberger S, Lilienfein N, Guggenmos A, Jocher C, Eidam T, Esser D, Tosa V, Pervak V, Limpert J, Tunnermann A, Krausz F, Pupeza I 2016 Optica 3 366Google Scholar

    [71]

    Jocher C, Eidam T, Hadrich S, Limpert J, Tunnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [72]

    Porat G, Heyl C, Schoun S B, Benko C, Dorre N, Corwin K L, Ye J 2017 Nat. Photonics 12 387

    [73]

    Drake G W, Yan Z C 2008 Can. J. Phys. 86 45Google Scholar

    [74]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [75]

    Pálffy A 2010 Contemp. Phys. 51 471Google Scholar

    [76]

    Ubachs W, Salumbides E J, Eikema K S, Oliveira N D, Nahon L 2014 Electron. Spectrosc. Relat. Phenom. 196 159Google Scholar

    [77]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [78]

    Zhang C, Schoun S B, Heyl C, Porat G, Gaarde M B, Ye J 2020 Phys. Rev. Lett. 125 093902

    [79]

    Pinkert T J, Kandula D Z, Gohle C, Barmes I, Morgenweg J, Eikema K S 2011 Opt. Lett. 36 2026Google Scholar

    [80]

    Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar

    [81]

    Emaury F, Diebold A, Saraceno C J, Keller U 2015 Optica 2 980Google Scholar

    [82]

    Labaye F, Gaponenko M S, Wittwer V J, Diebold A, Paradis C, Modsching N, Merceron L, Emaury F, Graumann I J, Phillips C R, Saraceno C J, Krankel C, Keller U, Sudmeyer T 2017 Opt. Lett. 42 5170Google Scholar

    [83]

    Yu Z J, Han H N, Xie Y, Peng Y N, Xu X D, Wei Z Y 2016 Opt. Express 24 3103Google Scholar

    [84]

    Tian W L, Yu C, Zhu J F, Zhang D C, Wei Z Y, Xu X D, Xu J 2019 Opt. Express 27 21448Google Scholar

    [85]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [86]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

  • 图 1  高次谐波与XUV飞秒光学频率梳光谱

    Figure 1.  Spectrum of High-Harmonic generation and XUV optical frequency comb

    图 2  啁啾脉冲放大技术

    Figure 2.  Chirped pulse amplification

    图 3  光参量啁啾脉冲放大技术

    Figure 3.  Optical parametric chirped pulse amplification

    图 4  F-P腔的相干脉冲放大:(a)时域中; (b)频域中

    Figure 4.  Coherent pulse amplification in F-P cavity: (a)Time domain; (b)frequency domain.

    图 5  布儒斯特片以及衍射光栅镜耦合输出XUV:(a)布儒斯特片;(b)衍射光栅镜

    Figure 5.  XUV output coupling by Brewster plate and grating mirror: (a)Brewster plate; (b)grating mirror.

    图 6  高次谐波通过腔镜中的一个小孔耦合输出

    Figure 6.  The output coupling of high-harmonic light from a small aperture in one of the cavity mirrors.

    图 7  (a)XUV输出耦合器照片; (b)镜子表面小孔的近距离照片[51]

    Figure 7.  (a)Photograph of a XUV output coupler; (b)close-up photograph of aperture in the mirror surface[51].

    图 8  飞秒共振增强腔中的非共线高次谐波产生

    Figure 8.  Non-collinear high harmonic generation in femtosecond enhancement cavity

    图 9  fsEC腔内高次谐波产生实验装置[43]

    Figure 9.  Schematic setup of high-harmonic generation in fsEC[43]

    图 10  OPCPA系统驱动XUV飞秒光学频率梳产生[9]

    Figure 10.  XUV femtosecond optical frequency comb generation drived by OPCPA system[9]

    图 11  薄片振荡器内产生高次谐波实验装置[82]

    Figure 11.  Experimental setup of HHG in a thin-disk laser oscillator[82]

  • [1]

    Eckstein J N, Ferguson A I, Hänsch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [2]

    Baird K M, Evenson K M, Hanes G R, Jennings D A, Petersen F R 1979 Opt. Lett. 4 263Google Scholar

    [3]

    Layer H P, Rowley W R C, Marx B R 1981 Opt. Lett. 6 188Google Scholar

    [4]

    Pollock C R, Jennings D A, Petersen F R, Wells J S, Drullinger R E, Beaty E C, Evenson K M 1983 Opt. Lett. 8 133Google Scholar

    [5]

    Jennings D A, Pollock C R, Petersen F R, Drullinger R E, Evenson K M, Wells J S, Hall J L, Layer H P 1983 Opt. Lett. 8 136Google Scholar

    [6]

    Ma L, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers S, Oates C W, Hollberg L, Diddams S A 2004 Science 303 1843Google Scholar

    [7]

    Merkt F, Softley T P 1992 Chem. Phys. 96 4149

    [8]

    Herrmann M, Haas M D, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knunz S, Kolachevsky N, Schussler H A, Hänsch T W, Udem T 2009 Phys. Rev. A. 79 052505Google Scholar

    [9]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S E 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [10]

    Eyler E E, Chieda D E, Stowe M C, Thorpe M J, Rschibi T R, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [11]

    Peik E, Tamm C 2003 Europhys. Lett. 61 181Google Scholar

    [12]

    Rellergert W G, Demille D, Greco R, Hehlen M P, Torgerson, J R, Hudson E R 2010 Phys. Rev. Lett. 104 200802Google Scholar

    [13]

    Campbell C J, Radnaev A G, Kuzmich A 2011 Phys. Rev. Lett. 106 223001Google Scholar

    [14]

    Murphy M T, Webb J K, Flambaum V V 2003 Mon. Not. R. Astron. Soc. 345 609Google Scholar

    [15]

    Berengut J C, Dzuba V A, Flambaum V V, Ong A 2011 Phys. Rev. Lett. 106 210802Google Scholar

    [16]

    Mcpherson A, Gibson G N, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B. 4 595Google Scholar

    [17]

    Ferray M, Lhuillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B-AT Mol. Opt. 21 L31Google Scholar

    [18]

    Lhuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [19]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766Google Scholar

    [20]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [21]

    Popmintchev T, Chen M, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S E, Gaeta A L, Hernandezgarcia C, Plaja L, Becker A, Jaronbecker A, Mumane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [22]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [23]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [24]

    Ross I N, Matousek P, Towrie M, Langley A J, Collier J L 1997 Opt. Commun. 144 125Google Scholar

    [25]

    Mears R J, Reekie L, Poole S B, Payne D N 1985 Electron. Lett. 21 738Google Scholar

    [26]

    Mears R J, Reekie L, Poole S B, Payne D N 1986 Electron. Lett. 22 159Google Scholar

    [27]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Optical Fiber Communication Conference Reno, United States, 19 January, 1987 pWI2

    [28]

    Mears R J, Reekie L, Jauncey I M, Payne D N 1987 Electron. Lett. 23 1026Google Scholar

    [29]

    Desurvire E, Simpson J R, Becker P C 1987 Opt. Lett. 12 888Google Scholar

    [30]

    Snitzer E, Po H, Hakimi F, Tumminelli R P, Mccollum B C 1988 Optical Fiber Sensors New Orleans, United States, 27 January, 1988 pPD5

    [31]

    Po H, Snitzer E, Tumminelli R P, Zenteno L, Hakimi F, Cho N M, Haw T 1989 Optical Fiber Communication Conference Houston, United States, 6 February, 1989 pPD7

    [32]

    Jones R J, Ye J 2002 Opt. Lett. 27 1848Google Scholar

    [33]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [34]

    Zimmermann C, Vuletic V, Hemmerich A, Hänsch T W 1995 Appl. Phys. Lett. 66 2318Google Scholar

    [35]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B. 24 576Google Scholar

    [36]

    Jones R J, Ye J 2004 Opt. Lett. 29 2812Google Scholar

    [37]

    Jones R J, Thomann I, Ye J 2004 Phys. Rev. A. 69 051803Google Scholar

    [38]

    Devoe R G, Fabre C, Jungmann K, Hoffnagle J A, Brewer R G 1988 Phys. Rev. A. 37 1802Google Scholar

    [39]

    Moll K D, Jones R J, Ye J 2005 Opt. Express 13 1672Google Scholar

    [40]

    韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206Google Scholar

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206Google Scholar

    [41]

    Pupeza I, Fill E E, Krausz F 2011 Opt. Express 19 12108Google Scholar

    [42]

    Mills A K, Hammond T J, Lam M H, Jones D J 2012 J. Phys. B 45 142001Google Scholar

    [43]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [44]

    Gohle C, Udem T, Rauschenberger J, Holzwarth R, Herrmann M G, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [45]

    Lee J, Carlson D R, Jones R J 2011 Opt. Express 19 23315Google Scholar

    [46]

    Yost D C, Schibli T R, Ye J 2008 Opt. Lett. 33 1099Google Scholar

    [47]

    Yost D C, Cingoz A, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2011 Opt. Express 19 23483Google Scholar

    [48]

    Yang Y, Susmann F, Zherebtsov S, Pupeza I, Kaster J, Lehr D, Fuchs H J, Kley E, Fill EE, Duan X, Zhao Z S, Krausz F, Stebbings S L, Kling, M. F 2011 Opt. Express 19 1954Google Scholar

    [49]

    Moll K D, Jones R J, Ye J 2006 Opt. Express 14 8189Google Scholar

    [50]

    Weitenberg J, Rusbuldt P, Eidam T, Pupeza I 2011 Opt. Express 19 9551Google Scholar

    [51]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Russbueldt P, Rauschenberger J, Limpert J, Udem T, Tuennermann A, Hänsch T W, Apolonskiy A, Krausz F, Fi ll, E. E 2013 Nat. Photonics 7 608Google Scholar

    [52]

    Paschotta, R 2006 Opt. Express 14 6069Google Scholar

    [53]

    Lhuillier A, Balcou P, Candel S, Schafer K J, Kulander K C 1992 Phys. Rev. A. 46 2778Google Scholar

    [54]

    Wu J, Zeng H 2007 Opt. Lett. 32 3315Google Scholar

    [55]

    Ozawa A, Vernaleken A, Schneider W, Gotlibovych I, Udem T, Hänsch T W 2008 Opt. Express 16 6233Google Scholar

    [56]

    Fomichev S V, Breger P, Carre B, Agostini P, Zaretsky D F 2002 Laser Phys. 12 383

    [57]

    Ozawa A, Vernaleken A, Gotlibovych I, Hommelhoff P, Udem T, Hänsch T W 2010 Proceedings of Spie the International Society for Optical Engineering Brussels, Belgium, 4 June, 2010 p7728

    [58]

    Allison T K, Cingoz A, Yost D C, Ye J 2011 Phys. Rev. Lett. 107 183903Google Scholar

    [59]

    Carlson D R, Lee J, Mongelli J, Wright E M, Jones R J 2011 Opt. Lett. 36 2991Google Scholar

    [60]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015Google Scholar

    [61]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tunnermann A 2010 Opt. Lett. 35 94Google Scholar

    [62]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [63]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [64]

    Pupeza I, Eidam T, Rauschenberger J, Bernhardt B, Ozawa A, Fill E E, Apolonski A, Udem T, Limpert J, Alahmed Z A, Azzeer A M, Tunnermann A, Hänsch T W, Krausz, F 2010 Opt. Lett. 35 2052Google Scholar

    [65]

    Hao Q, Li W X, Zeng H P 2009 Opt. Express 17 5815Google Scholar

    [66]

    Bernhardt B, Ozawa A, Pupeza I, Vernaleken A, Kobayashi Y, Holzwarth R, Fill E E, Krausz F, Hänsch T W, Udem T 2011 Quantum Electronics and Laser Science Conference Baltimore, United States, 1–6 May, 2011 pQTuF3

    [67]

    Ditmire T, Crane J K, Nguyen H, Dasilva L B, Perry 1995 Phys. Rev. A. 51 R902Google Scholar

    [68]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [69]

    Pupeza I, Holzberger S, Eidam T, Esser D, Weitenberg J, Carstens H, Rusbuldt P, Limpert J, Udem T, Tunnermann A, Hänsch T W, Krausz F, Fill E E 2013 The European Physical Journal Conferences, Brussels, Belgium, 4 June, 2013 p10023

    [70]

    Carstens H, Högner M, Saule T, Holzberger S, Lilienfein N, Guggenmos A, Jocher C, Eidam T, Esser D, Tosa V, Pervak V, Limpert J, Tunnermann A, Krausz F, Pupeza I 2016 Optica 3 366Google Scholar

    [71]

    Jocher C, Eidam T, Hadrich S, Limpert J, Tunnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [72]

    Porat G, Heyl C, Schoun S B, Benko C, Dorre N, Corwin K L, Ye J 2017 Nat. Photonics 12 387

    [73]

    Drake G W, Yan Z C 2008 Can. J. Phys. 86 45Google Scholar

    [74]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [75]

    Pálffy A 2010 Contemp. Phys. 51 471Google Scholar

    [76]

    Ubachs W, Salumbides E J, Eikema K S, Oliveira N D, Nahon L 2014 Electron. Spectrosc. Relat. Phenom. 196 159Google Scholar

    [77]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [78]

    Zhang C, Schoun S B, Heyl C, Porat G, Gaarde M B, Ye J 2020 Phys. Rev. Lett. 125 093902

    [79]

    Pinkert T J, Kandula D Z, Gohle C, Barmes I, Morgenweg J, Eikema K S 2011 Opt. Lett. 36 2026Google Scholar

    [80]

    Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar

    [81]

    Emaury F, Diebold A, Saraceno C J, Keller U 2015 Optica 2 980Google Scholar

    [82]

    Labaye F, Gaponenko M S, Wittwer V J, Diebold A, Paradis C, Modsching N, Merceron L, Emaury F, Graumann I J, Phillips C R, Saraceno C J, Krankel C, Keller U, Sudmeyer T 2017 Opt. Lett. 42 5170Google Scholar

    [83]

    Yu Z J, Han H N, Xie Y, Peng Y N, Xu X D, Wei Z Y 2016 Opt. Express 24 3103Google Scholar

    [84]

    Tian W L, Yu C, Zhu J F, Zhang D C, Wei Z Y, Xu X D, Xu J 2019 Opt. Express 27 21448Google Scholar

    [85]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [86]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

  • [1] Zhao Han-Yu, Cao Shi-Ying, Dai Shao-Yang, Yang Tao, Zuo Ya-Ni, Hu Ming-Lie. Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology. Acta Physica Sinica, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] Li Wei-Yan, Liu Na, Wang Shang. Physical origins of complex interference structures in harmonic emission from molecular ions stretched to large internuclear distances. Acta Physica Sinica, 2023, 72(8): 083101. doi: 10.7498/aps.72.20222410
    [3] Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong. Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection. Acta Physica Sinica, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [4] Liang Xu, Lin Jia-Rui, Wu Teng-Fei, Zhao Hui, Zhu Ji-Gui. Absolute distance measurement using cross correlation interferometer with a repetition rate multiplication frequency comb. Acta Physica Sinica, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [5] Wang Yang, Liu Yu, Wu Cheng-Yin. Generation, manipulation, and application of high-order harmonics in solids. Acta Physica Sinica, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [6] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [7] Xia Wen-Ze, Liu Yang, He Ming-Zhao, Cao Shi-Ying, Yang Wei-Lei, Zhang Fu-Min, Miao Dong-Jing, Li Jian-Shuang. Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system. Acta Physica Sinica, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [8] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [9] Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min. Method of measuring absolute distance based on spectral interferometry using an electro-optic comb. Acta Physica Sinica, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] Chen Jia-Wei, Wang Jin-Dong, Qu Xing-Hua, Zhang Fu-Min. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method. Acta Physica Sinica, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [11] Peng Bo, Qu Xing-Hua, Zhang Fu-Min, Zhang Tian-Yu, Zhang Tie-Li, Liu Xiao-Xu, Xie Yang. Absolute distance measurement based on asymmetric cross-correlation of femtosecond pulse. Acta Physica Sinica, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [12] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua. Spectral interferometry based absolute distance measurement using frequency comb. Acta Physica Sinica, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [13] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Xing Shu-Jian, Qu Xing-Hua. A new method of measuring absolute distance by using optical frequency comb. Acta Physica Sinica, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [14] Wang Nan, Han Hai-Nian, Li De-Hua, Wei Zhi-Yi. Spatial dispersion of pulse shaping system with high resolution based on the frequency comb. Acta Physica Sinica, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [15] Han Hai-Nian, Zhang Jin-Wei, Zhang Qing, Zhang Long, Wei Zhi-Yi. Theoretical and experimental study on femtosecond enhancement resonator. Acta Physica Sinica, 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [16] Ge Yu-Cheng. Emission properties of high-order harmonic generation. Acta Physica Sinica, 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [17] Ge Yu-Cheng. Relation of harmonic radiative energy and laser phase in high-order harmonic generation. Acta Physica Sinica, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [18] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [19] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [20] Wang Hong-Chang, Wang Zhan-Shan, Li Fo-Sheng, Qin Shu-Ji, Du Yun, Wang Li, Zhang Zhong, Chen Ling-Yan. Analysis of the reflective performance of EUV multilayer under the influence of capping layer. Acta Physica Sinica, 2004, 53(7): 2368-2372. doi: 10.7498/aps.53.2368
Metrics
  • Abstract views:  10563
  • PDF Downloads:  400
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2020
  • Accepted Date:  29 June 2020
  • Available Online:  07 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回