-
Optical frequency combs (OFCs) each consist of a set of equally spaced discrete frequency components, and they have been widely applied to many fields such as metrology, optical arbitrary waveform generation, spectroscopy, optical communication, and THz generation. In this work, we propose a scheme for generating broadband and tunable OFCs based on a 1550 nm vertical-cavity surface-emitting laser (VCSEL) under pulsed current modulation and optical injection. Firstly, a pulsed electrical signal is utilized to drive a 1550 nm-VCSEL into the gain-switching state with a broad noisy spectrum. Next, a continuous optical wave is further introduced for generating broadband and tunable OFC. Under injection light with power of 18.82 µW and wavelength of 1551.8570 nm, and pulsed electrical signal with a frequency of 0.5 GHz and pulse width of 200 ps, an OFC with a bandwidth of 82.5 GHz and CNR of 35 dB is experimentally acquired, and the single sideband phase noise at the 0.5 GHz reaches –123.3 dBc/Hz at 10 kHz. Moreover, the influences of injection light wavelength, frequency and width of pulse electrical signal on the performance of generated OFC are investigated. The experimental results show that OFCs with different comb spacings can be obtained by varying the frequency of pulsed electrical signal. For the frequency of pulsed current signal varying in a range of 0.25 GHz–3 GHz, the bandwidth of generated OFCs can exceed 60 GHz through selecting optimized injection optical wavelength and width of pulse electrical signal.
-
Keywords:
- optical frequency comb (OFC) /
- vertical-cavity surface-emitting laser (VCSEL) /
- current modulation /
- optical injection
[1] Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223Google Scholar
[2] Diddams S, Vahala K, Udem T 2020 Science 369 267Google Scholar
[3] Yan X L, Zou X H, Pan W, Yan L S, Azaña J 2018 Opt. Lett. 43 283Google Scholar
[4] Cundiff S T, Weiner A M, Andrew M 2010 Nat. Photon. 4 760Google Scholar
[5] Li P L, Ma X L, Shi W H, Xu E M 2017 Opt. Laser Technol. 94 228Google Scholar
[6] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar
[7] Sadiek I, Mikkonen T, Vainio M, Toivonen J, Foltynowicz A 2018 Phys. Chem. 20 27849Google Scholar
[8] He J, Long F T, Deng R, Shi J, Dai M, Chen L 2017 J. Opt. Commun. 9 393Google Scholar
[9] Tan J, Zhao Z P, Wang Y H, Zhang Z K, Liu J G, Zhu N H 2018 Opt. Express 26 2099Google Scholar
[10] Ponnampalam L, Fice M, Shams H, Renaud C, Seeds A 2018 Opt. Lett. 43 2507Google Scholar
[11] Yu J G, Li K L, Chen Y X, Zhao L, Huang Y T, Li Y T, Ma J, Shan F L 2020 IEEE Photonics J. 12 7900808Google Scholar
[12] Davila-Rodriguez J, Bagnell K, Delfyett P J 2013 Opt. Lett. 38 3665Google Scholar
[13] Hou L, Huang Y, Liu Y, Zhang R, Wang J, Wang B, Zhu H, Hou B, Qiu B, Marsh J H 2020 Opt. Lett. 45 2760Google Scholar
[14] He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834Google Scholar
[15] Li D, Wu S B, Liu Y, Guo Y F 2020 Appl. Opt. 59 1916Google Scholar
[16] Qu K, Zhao S H, Li X, Tan Q G, Zhu Z H 2018 Opt. Rev. 25 264Google Scholar
[17] Wang Z F, Ma M, Sun H, Khalil M, Adams R, Yim K, Jin X, Chen L R 2019 IEEE J. Quantum Electron. 55 8400206Google Scholar
[18] Pascual M D G, Zhou R, Smyth F, Anandarajah P M, Barry L P 2015 Opt. Express 23 23225Google Scholar
[19] Zhu H T, Wang R, Pu T, Xiang P, Zheng J L, Fang T 2016 Laser Phys. Lett. 14 026201Google Scholar
[20] 郭星星, 项水英, 张雅慧, 郝跃 2021 光子学报 50 1020002Google Scholar
Guo X X, Xiang S Y, Zhang Y H, Hao Y 2021 Acta Photon. Sin. 50 1020002Google Scholar
[21] 钟东洲, 曾能, 杨华, 徐喆 2021 物理学报 70 074206Google Scholar
Zhong D Z, Zeng N, Yang H, Xu Z 2021 Acta Phys. Sin. 70 074206Google Scholar
[22] 王小发 2013 物理学报 62 104208Google Scholar
Wang X F 2013 Acta Phys. Sin. 62 104208Google Scholar
[23] 陈建军, 钟祝强, 李林福 2022 光学学报 42 0714003Google Scholar
Chen J J, Zhong Z Q, Li L F 2022 Acta Opt. Sin. 42 0714003Google Scholar
[24] Xie C, Spiga S, Dong P, Winzer P, Bergmann M, KöGel B, Neumeyr C, Amann M C 2015 J. Lightwave Technol. 33 670Google Scholar
[25] Wang Z, Lee H C, Ahsen O O, Lee B K, Choi W J, Potsaid B, Liu J, Jayaraman V, Cable A, Kraus M F 2014 Biomed. Opt. Express 5 2931Google Scholar
[26] Prior E, De Dios C, Ortsiefer M, Meissner P, Acedo P 2015 J. Lightwave Technol. 33 4572Google Scholar
[27] Prior E, De Dios C, Criado R, Ortsiefer M, Meissner P, Acedo P 2016 Opt. Lett. 41 4083Google Scholar
[28] Quirce A, De Dios C, Valle A, Pesquera L, Acedo P 2018 J. Lightwave Technol. 36 1798Google Scholar
[29] Quirce A, De Dios C, Valle A, Acedo P 2018 IEEE J. Sel. Top. Quantum Electron. 25 2888560Google Scholar
[30] Ren H P, Fan L, Liu N, Wu Z M, Xia G Q 2020 Photonics 7 95Google Scholar
[31] Rosado A, Martin E P, Perez-Serrano A, Tijero J, Anandarajah P M 2020 Opt. Laser Technol. 131 106392Google Scholar
[32] Rosado A, Pérez-Serrano A, Tijero J M G, Valle Á, Pesquera L, Esquivias I 2019 Opt. Express 27 9155Google Scholar
[33] Rosado A, Pérez-Serrano A, Tijero J M G, Gutierrez A V, Pesquera L, Esquivias I 2019 IEEE J. Quantum Electron. 55 2001012Google Scholar
-
图 1 实验系统结构图. TL-可调谐激光器; VA-可变衰减器; PC-偏振控制器; FC-光纤耦合器; PM-光功率计; OC-光环形器; AWG-任意波形发生器; EA-电放大器; DC-直流电源; VCSEL-垂直腔面发射激光器; OFP-光纤起偏器; EDFA-掺铒光纤放大器; PD-光电探测器; ESA-频谱分析仪; DSO-数字实时示波器; OSA-光谱分析仪. 实线-光路; 虚线-电路
Figure 1. Schematic diagram of the experimental system: TL-tunable laser; VA-variable attenuator; PC-polarization controller; FC-fiber coupler; PM-power meter; OC-optical circulator; AWG-arbitrary waveform generator; EA-electric amplifier; DC-direct current; VCSEL-vertical-cavity surface-emitting laser; OFP-optical fiber polarizer; EDFA-erbium-doped fiber amplifier; PD-photo-detector; ESA-spectrum analyzer; DSO-digital storage oscilloscope; OSA-optical spectrum analyzer. Solid line-optical path; dashed line-electronic path.
图 3 AWG产生的脉冲调制信号在不同时间窗口的波形 (a1)—(a2), 脉冲电流调制下的VCSEL输出的时间序列 (b1) 和光谱 (b2), 以及进一步引入光注入 (λi = 1551.8570 nm, Pi = 18.82 µW) 后VCSEL输出的时间序列(c1)和光谱(c2)
Figure 3. Pulsed waveforms in different time windows generated by AWG (a1)–(a2), time series (b1) and optical spectrum (b2) of pulsed current-modulated VCSEL, time series (c1) and optical spectrum (c2) of pulsed current-modulated VCSEL under optical injection with Pi = 18.82 µW and λi = 1551.8570.
图 4 Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps时, 随着λi增大, 光注入下脉冲电流调制VCSEL输出OFC带宽 (a) 和CNR (b) 的变化趋势.
Figure 4. Evolution of the bandwidth (a) and CNR (b) as a function of the injection light wavelength for the pulsed current modulation VCSEL at Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps.
-
[1] Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223Google Scholar
[2] Diddams S, Vahala K, Udem T 2020 Science 369 267Google Scholar
[3] Yan X L, Zou X H, Pan W, Yan L S, Azaña J 2018 Opt. Lett. 43 283Google Scholar
[4] Cundiff S T, Weiner A M, Andrew M 2010 Nat. Photon. 4 760Google Scholar
[5] Li P L, Ma X L, Shi W H, Xu E M 2017 Opt. Laser Technol. 94 228Google Scholar
[6] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar
[7] Sadiek I, Mikkonen T, Vainio M, Toivonen J, Foltynowicz A 2018 Phys. Chem. 20 27849Google Scholar
[8] He J, Long F T, Deng R, Shi J, Dai M, Chen L 2017 J. Opt. Commun. 9 393Google Scholar
[9] Tan J, Zhao Z P, Wang Y H, Zhang Z K, Liu J G, Zhu N H 2018 Opt. Express 26 2099Google Scholar
[10] Ponnampalam L, Fice M, Shams H, Renaud C, Seeds A 2018 Opt. Lett. 43 2507Google Scholar
[11] Yu J G, Li K L, Chen Y X, Zhao L, Huang Y T, Li Y T, Ma J, Shan F L 2020 IEEE Photonics J. 12 7900808Google Scholar
[12] Davila-Rodriguez J, Bagnell K, Delfyett P J 2013 Opt. Lett. 38 3665Google Scholar
[13] Hou L, Huang Y, Liu Y, Zhang R, Wang J, Wang B, Zhu H, Hou B, Qiu B, Marsh J H 2020 Opt. Lett. 45 2760Google Scholar
[14] He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834Google Scholar
[15] Li D, Wu S B, Liu Y, Guo Y F 2020 Appl. Opt. 59 1916Google Scholar
[16] Qu K, Zhao S H, Li X, Tan Q G, Zhu Z H 2018 Opt. Rev. 25 264Google Scholar
[17] Wang Z F, Ma M, Sun H, Khalil M, Adams R, Yim K, Jin X, Chen L R 2019 IEEE J. Quantum Electron. 55 8400206Google Scholar
[18] Pascual M D G, Zhou R, Smyth F, Anandarajah P M, Barry L P 2015 Opt. Express 23 23225Google Scholar
[19] Zhu H T, Wang R, Pu T, Xiang P, Zheng J L, Fang T 2016 Laser Phys. Lett. 14 026201Google Scholar
[20] 郭星星, 项水英, 张雅慧, 郝跃 2021 光子学报 50 1020002Google Scholar
Guo X X, Xiang S Y, Zhang Y H, Hao Y 2021 Acta Photon. Sin. 50 1020002Google Scholar
[21] 钟东洲, 曾能, 杨华, 徐喆 2021 物理学报 70 074206Google Scholar
Zhong D Z, Zeng N, Yang H, Xu Z 2021 Acta Phys. Sin. 70 074206Google Scholar
[22] 王小发 2013 物理学报 62 104208Google Scholar
Wang X F 2013 Acta Phys. Sin. 62 104208Google Scholar
[23] 陈建军, 钟祝强, 李林福 2022 光学学报 42 0714003Google Scholar
Chen J J, Zhong Z Q, Li L F 2022 Acta Opt. Sin. 42 0714003Google Scholar
[24] Xie C, Spiga S, Dong P, Winzer P, Bergmann M, KöGel B, Neumeyr C, Amann M C 2015 J. Lightwave Technol. 33 670Google Scholar
[25] Wang Z, Lee H C, Ahsen O O, Lee B K, Choi W J, Potsaid B, Liu J, Jayaraman V, Cable A, Kraus M F 2014 Biomed. Opt. Express 5 2931Google Scholar
[26] Prior E, De Dios C, Ortsiefer M, Meissner P, Acedo P 2015 J. Lightwave Technol. 33 4572Google Scholar
[27] Prior E, De Dios C, Criado R, Ortsiefer M, Meissner P, Acedo P 2016 Opt. Lett. 41 4083Google Scholar
[28] Quirce A, De Dios C, Valle A, Pesquera L, Acedo P 2018 J. Lightwave Technol. 36 1798Google Scholar
[29] Quirce A, De Dios C, Valle A, Acedo P 2018 IEEE J. Sel. Top. Quantum Electron. 25 2888560Google Scholar
[30] Ren H P, Fan L, Liu N, Wu Z M, Xia G Q 2020 Photonics 7 95Google Scholar
[31] Rosado A, Martin E P, Perez-Serrano A, Tijero J, Anandarajah P M 2020 Opt. Laser Technol. 131 106392Google Scholar
[32] Rosado A, Pérez-Serrano A, Tijero J M G, Valle Á, Pesquera L, Esquivias I 2019 Opt. Express 27 9155Google Scholar
[33] Rosado A, Pérez-Serrano A, Tijero J M G, Gutierrez A V, Pesquera L, Esquivias I 2019 IEEE J. Quantum Electron. 55 2001012Google Scholar
Catalog
Metrics
- Abstract views: 3479
- PDF Downloads: 70
- Cited By: 0