Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb

Wang Jia-Qiang Wu Zhi-Fang Feng Su-Chun

Citation:

Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb

Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun
PDF
HTML
Get Citation
  • The scheme of generating optical frequency comb mainly includes mode-locked laser, electro-optic modulation comb, nonlinear Kerr micro-resonator comb, and nonlinear supercontinuum comb. For the nonlinear supercontinuum comb scheme, the silica-based high nonlinear fiber with near-zero flattened normal dispersion is required. However the fiber dispersion varies along the fiber due to the fabrication inaccuracy. Furthermore, nonlinear supercontinuum comb generation based on the nonlinear fiber has not been systematically studied. In this paper, an optimal design of four-clad flat normal dispersion high nonlinear silica fiber with a triangular core refractive index distribution for the flat optical frequency comb generation is carried out. The effects of the fiber cladding width and refractive index on the fiber dispersion characteristics and cut-off wavelength are studied through using the finite element method mode solver. The optimally designed fiber can obtain relatively flat near-zero normal dispersion in a wavelength range of 1400–1700 nm, the dispersion range is –3–0 $ \rm{p}\rm{s}/(\rm{k}\rm{m}\cdot \rm{n}\rm{m}) $, and the dispersion slope is close to 0 at nearly 1550 nm. The effective mode field area of the nonlinear silica fiber is about 11$ {\text{μm}}^{2} $, and the nonlinear coefficient can reach 12.8$ {\rm{W}}^{-1}{\cdot \rm{k}\rm{m}}^{-1} $.Based on the electro-optic modulation pulse pumping the flat normal dispersion high nonlinear silica fiber, the flat optical frequency comb generation is systematically simulated with the generalized nonlinear Schrödinger equation. The time-frequency evolutions of a hyperbolic secant pulse, a Gaussian pulse and a super Gaussian pulse are simulated by using the X-Frog technology. The time-frequency spectrograms connect the time domain and the frequency domain of the pulse, clearly showing the change of pulse chirp during the propagation. The effects of various parameters on the optical frequency comb are studied, such as the fiber length, second-order dispersion, third-order dispersion, pulse peak power, pulse half width, pulse initial chirp, and pulse shape. An optical frequency comb with 3-dB flatness and about 40-nm bandwidth can be achieved based on hyperbolic secant pulse or Gaussian pulse pumping. Compared with the hyperbolic secant pulse and Gaussian pulse, the super Gaussian pulse can produce a flatter optical frequency comb. An optical frequency comb with 2-dB flatness and about 92-nm bandwidth can be achieved based on the super Gaussian pulse pumping. Therefore, based on the proposed high nonlinear fiber with normal dispersion , it is possible to realize an optical frequency comb with a repetition rate above 10 GHz, power flatness within 3 dB, and spectral bandwidth of about 40–90 nm. The simulation results are beneficial to promoting the localization of normal dispersion high nonlinear silica fiber and its application in flat optical frequency comb.
      Corresponding author: Feng Su-Chun, schfeng@bjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for Central Universities of China (Grant No. 2021JBM002) and the National Natural Science Foundation of China (Grant Nos. 61827818, 62275012).
    [1]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [2]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [3]

    Hu H, Oxenløwe L K 2021 Nanophotonics 10 1367Google Scholar

    [4]

    Company V T, Weiner A M 2014 Laser Photonics Rev. 8 368Google Scholar

    [5]

    Wu R, Company V T, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [6]

    Ataie V, Myslivets E, Kuo B P P, Alic N, Radic S 2014 J. Lightwave Technol. 32 840Google Scholar

    [7]

    Yang T, Dong J J, Liao S S, Huang D X, Zhang X L 2013 Opt. Express 21 8508Google Scholar

    [8]

    Yu S, Bao F, Hu H 2018 IEEE Photonics J. 10 2Google Scholar

    [9]

    Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D, Xiao J L, Zhang D M, Qin G S, Huang Y Z 2020 Opto-Electron Adv. 3 190033Google Scholar

    [10]

    张馨, 张江华, 李仪茗, 殷科, 郑鑫, 江天 2021 中国激光 48 0116002Google Scholar

    Zhang X, Zhang J H, Li Y M, Yin K, Zheng X, Jiang T 2021 Chin. J. Lasers 48 0116002Google Scholar

    [11]

    Cerqueira S Jr A, Chavez Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C 2008 Opt. Express 16 2816Google Scholar

    [12]

    Li Q, Huang Y, Jia Z, Yao C, Qin G, Ohishi Y, Qin W 2018 J. Lightwave Technol. 36 2211Google Scholar

    [13]

    Poletti F, Feng X, Ponzo G M, Petrovich M N, Loh W H, Richardson D J 2011 Opt. Express 19 66Google Scholar

    [14]

    Kuo B P P, Fini J M, Grüner-Nielsen L, Radic S 2012 Opt. Express 20 18611Google Scholar

    [15]

    吴志芳2019 硕士学位论文 (北京: 北京交通大学)

    Wu Z F 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [16]

    骆飞 2020 硕士学位论文 (北京: 北京交通大学)

    Luo F 2020 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [17]

    王智 2000 博士学位论文 (北京: 北京交通大学)

    Wang Z 2000 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [18]

    孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 物理学报 68 114210Google Scholar

    Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar

    [19]

    Yang X, Richardson D J, Petropoulos P 2012 J. Lightwave Technol. 30 1971Google Scholar

  • 图 1  正常色散平坦高非线性光纤 (a) 光纤结构; (b) 折射率分布

    Figure 1.  Flat normal dispersion high nonlinear fiber: (a) Structure; (b) refractive index distribution.

    图 2  各包层相对折射率变化对光纤色散特性的影响 (a) 改变△n1; (b) 改变△n2; (c) 改变△n3; (d) 改变△n4

    Figure 2.  Effect of relative refractive index change of each cladding on fiber dispersion characteristics: (a) Changing △n1; (b) changing △n2; (c) changing △n3; (d) changing △n4.

    图 3  各包层相对宽度变化对光纤色散特性的影响 (a) 改变∆r1; (b) 改变∆r2; (c) 改变∆r3; (d) 改变∆r4

    Figure 3.  Effect of relative width variation of each cladding on fiber dispersion characteristics: (a) Changing ∆r1; (b) changing ∆r2; (c) changing ∆r3; (d) changing ∆r4.

    图 4  光纤中激发出的高阶模场 (a)$ \Delta {n}_{3} $取值过大; (b)$ \Delta {n}_{4} $的绝对值过小; (c)$ \Delta {r}_{3} $取值过大; (d)$ \Delta {r}_{4} $取值过小

    Figure 4.  High-order mode field excited in the fiber: (a) When $ \Delta {n}_{3} $ is too large; (b) when the absolute value of $ \Delta {n}_{4} $ is too small; (c) when$ \Delta {r}_{3} $ is too large; (d) when $ \Delta {r}_{4} $ is too small.

    图 5  最终优化设计的正常色散平坦高非线性光纤 (a) 色散变化曲线; (b)$ {A}_{\rm{e}\rm{f}\rm{f}} $$ \gamma $变化曲线

    Figure 5.  The final designed normal dispersion high nonlinear fiber: (a) The dispersion curve; (b) the curve of $ {A}_{\rm{e}\rm{f}\rm{f}} $ and $ \gamma $.

    图 6  无啁啾双曲正割光脉冲经过正常色散平坦高非线性光纤产生光频梳 (a),(b) 传输不同光纤长度情况下时域和频域包络演化; (c),(d) 传输到400 m时光频率梳时域和频域包络

    Figure 6.  The generated optical frequency comb with a non-chirped hyperbolic secant pulse propagating in flat normal dispersion high nonlinear fiber: (a),(b) Time and frequency domain envelope evolution with different propagation length; (c),(d) time and frequency domain envelope of the optical frequency comb after the pulse propagation of 400 m.

    图 7  无啁啾双曲正割光脉冲传输不同光纤长度产生光频率梳的时谱图 (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m

    Figure 7.  Spectrograms of non-chirped hyperbolic secant optical pulses at various propagation fiber lengths: (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m.

    图 8  改变一个参数而其他参数不变, 脉冲在传输400 m光纤后展宽的光频率梳频谱包络及时域波形 (a)只改变$ P $; (b)只改变$ {T}_{0} $; (c)只改变$ C $; (d)只改变$ {\beta }_{2} $; (e)只改变$ {\beta }_{3} $; (f)只改变输入脉冲波形

    Figure 8.  The broadening optical frequency comb spectra and pulse envelope after the pulse propagates through 400 m fiber when one parameter is changed while the other parameters remain unchanged: (a) Only changeing $ P $; (b) only changeing $ {T}_{0} $; (c) only changeing $ C $; (d) only changeing $ {\beta }_{2} $; (e) only changeing $ {\beta }_{3} $; (f) only changeing the input pulse waveform.

    图 9  无啁啾高斯光脉冲(m = 1)传输不同光纤长度产生光频率梳的时谱图 (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m

    Figure 9.  Spectrograms of the non-chirped Gaussian pulse (m = 1) at various propagation fiber lengths: (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m.

    图 10  无啁啾超高斯光脉冲(m = 5)传输不同光纤长度产生光频率梳的时谱图 (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m

    Figure 10.  Spectrograms of the non-chirped super Gaussian pulse (m = 5) at various propagation fiber lengths: (a) 0 m; (b) 100 m; (c) 200 m; (d) 400 m.

    表 1  仿真所采用的参数

    Table 1.  The parameters used in the simulation.

    Parameterβ2/
    (ps2·km–1)
    β3/
    (ps3·km–1)
    β4/
    (ps4·km–1)
    γ/
    (W–1·m–1)
    P/
    W
    T0/
    ps
    α/
    (dB·km–1)
    Value0.66–0.006200.01283010.8
    DownLoad: CSV
  • [1]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [2]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [3]

    Hu H, Oxenløwe L K 2021 Nanophotonics 10 1367Google Scholar

    [4]

    Company V T, Weiner A M 2014 Laser Photonics Rev. 8 368Google Scholar

    [5]

    Wu R, Company V T, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [6]

    Ataie V, Myslivets E, Kuo B P P, Alic N, Radic S 2014 J. Lightwave Technol. 32 840Google Scholar

    [7]

    Yang T, Dong J J, Liao S S, Huang D X, Zhang X L 2013 Opt. Express 21 8508Google Scholar

    [8]

    Yu S, Bao F, Hu H 2018 IEEE Photonics J. 10 2Google Scholar

    [9]

    Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D, Xiao J L, Zhang D M, Qin G S, Huang Y Z 2020 Opto-Electron Adv. 3 190033Google Scholar

    [10]

    张馨, 张江华, 李仪茗, 殷科, 郑鑫, 江天 2021 中国激光 48 0116002Google Scholar

    Zhang X, Zhang J H, Li Y M, Yin K, Zheng X, Jiang T 2021 Chin. J. Lasers 48 0116002Google Scholar

    [11]

    Cerqueira S Jr A, Chavez Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C 2008 Opt. Express 16 2816Google Scholar

    [12]

    Li Q, Huang Y, Jia Z, Yao C, Qin G, Ohishi Y, Qin W 2018 J. Lightwave Technol. 36 2211Google Scholar

    [13]

    Poletti F, Feng X, Ponzo G M, Petrovich M N, Loh W H, Richardson D J 2011 Opt. Express 19 66Google Scholar

    [14]

    Kuo B P P, Fini J M, Grüner-Nielsen L, Radic S 2012 Opt. Express 20 18611Google Scholar

    [15]

    吴志芳2019 硕士学位论文 (北京: 北京交通大学)

    Wu Z F 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [16]

    骆飞 2020 硕士学位论文 (北京: 北京交通大学)

    Luo F 2020 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [17]

    王智 2000 博士学位论文 (北京: 北京交通大学)

    Wang Z 2000 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [18]

    孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 物理学报 68 114210Google Scholar

    Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar

    [19]

    Yang X, Richardson D J, Petropoulos P 2012 J. Lightwave Technol. 30 1971Google Scholar

  • [1] Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi. Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity. Acta Physica Sinica, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] Gao Rong, Yang Ya-Nan, Zhan Chen-Yi, Zhang Zong-Zhen, Deng Yi, Wang Zi-Xiao, Liang Kun, Feng Su-Chun. Design of optical frequency comb based on dual frequency pumped normal dispersion silicon carbide microresonator. Acta Physica Sinica, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [3] Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong. Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection. Acta Physica Sinica, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [4] Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing. Dispersion management dual-pass self-phase modulation-enabled spectral selection. Acta Physica Sinica, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [5] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [6] Xia Wen-Ze, Liu Yang, He Ming-Zhao, Cao Shi-Ying, Yang Wei-Lei, Zhang Fu-Min, Miao Dong-Jing, Li Jian-Shuang. Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system. Acta Physica Sinica, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [7] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [8] Zheng Li, Liu Han, Wang Hui-Bo, Wang Ge-Yang, Jiang Jian-Wang, Han Hai-Nian, Zhu Jiang-Feng, Wei Zhi-Yi. Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet. Acta Physica Sinica, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [9] Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min. Method of measuring absolute distance based on spectral interferometry using an electro-optic comb. Acta Physica Sinica, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [11] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [12] Jia Nan, Li Tang-Jun, Sun Jian, Zhong Kang-Ping, Wang Mu-Guang. Simultaneous demultiplexing into two 10 Gbit/s using a bidirectionally operated highly nonlinear fiber. Acta Physica Sinica, 2014, 63(2): 024201. doi: 10.7498/aps.63.024201
    [13] Jia Nan, Li Tang-Jun, Sun Jian, Zhong Kang-Ping, Wang Mu-Guang. Coherence properties of supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber. Acta Physica Sinica, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [14] Li Shu-Biao, Wu Bao-Jian, Wen Feng, Han Rui. Research on magnetic control mechanism of four-wave mixing in highly nonlinear fiber. Acta Physica Sinica, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [15] Li Shu-Guang, Zhu Xing-Ping, Xue Jian-Rong. Supercontinuum generation in all-normal dispersion photonic crystal fiber. Acta Physica Sinica, 2013, 62(20): 204206. doi: 10.7498/aps.62.204206
    [16] Wang Nan, Han Hai-Nian, Li De-Hua, Wei Zhi-Yi. Spatial dispersion of pulse shaping system with high resolution based on the frequency comb. Acta Physica Sinica, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [17] Wang Wen-Rui, Yu Jin-Long, Han Bing-Chen, Guo Jing-Zhong, Luo Jun, Wang Ju, Liu Yi, Yang En-Ze. All-optical logic gates based on nonlinear polarization rotation in high nonlinear fiber. Acta Physica Sinica, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [18] Ma Wen-Wen, Li Shu-Guang, Yin Guo-Bing, Feng Rong-Pu, Fu Bo. High efficiency pulse compression in tapered microstructure fibers in anomalous dispersion region. Acta Physica Sinica, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [19] Chen Yong-Zhu, Li Yu-Zhong, Xu Wen-Cheng. Research on flat ultra-wideband supercontinuum generated in dispersion-flattened decreasing fiber. Acta Physica Sinica, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [20] Xia Ge, Huang De-Xiu, Yuan Xiu-Hua. Investigation of supercontinuum generation in normal dispersion-flattened fiber by picosecond seed pulses. Acta Physica Sinica, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
Metrics
  • Abstract views:  5107
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2022
  • Accepted Date:  13 July 2022
  • Available Online:  28 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回