Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research and design of broadband muffler based on second-order Helmholtz resonators

Shi Quan-Quan Yang Yu-Zhen Zhao Zhun An Bing-Wen Tian Peng-Yi Jiang Cheng-Cheng Deng Ke Jia Han Yang Jun

Citation:

Research and design of broadband muffler based on second-order Helmholtz resonators

Shi Quan-Quan, Yang Yu-Zhen, Zhao Zhun, An Bing-Wen, Tian Peng-Yi, Jiang Cheng-Cheng, Deng Ke, Jia Han, Yang Jun
PDF
HTML
Get Citation
  • Noise is always a serious factor affecting people's quality of life. The most common sound-absorbing materials are porous materials, which work based on the principle that sound waves entering into the pores inside the material are subjected to air friction and viscous resistance, thus converting sound energy into heat. Porous materials have excellent performance of absorbing medium-frequency and high-frequency sound , but they are required to be thick enough to control the low-frequency sound waves with large wavelengths, which limits the application of porous materials in low-frequency noise control. In recent years, acoustic artificial structures have become a research hotspot, which can realize exotic effective acoustic parameters based on periodical structure or local resonance. Acoustic artificial structure provides a new material basis for noise control, in which Helmholtz resonator plays an important role because of its simple geometry. In this study, a broadband muffler is designed based on the second-order neck embedded Helmholtz resonator. In order to achieve low-frequency and broadband sound insulation with a limited number of units and structure length, the second-order resonator is chosen as a basic structure unit, which has a stronger low-frequency noise reduction capability and has one high-frequency transmission loss peak more than a conventional Helmholtz resonator. The acoustic characteristics and insulation performance of second-order resonators are analyzed through theoretical calculation, simulation calculation and experimental test. Then, based on the theoretical model and empirical rules, a broadband muffler composed of nine second-order resonators is designed by carefully adjusting the geometry parameters of each resonator. The three-dimensional printed resonators are installed on the side wall of a square standing wave tube for experimental measurement. In the experiment, the transmission loss curve of the muffler is measured by the two-load method. The result shows that the designed muffler has good sound insulation performances in a frequency range of 267–927 Hz, with the whole transmission loss above 20 dB and the maximum sound insulation up to 60 dB. The experimental result is consistent with the calculation result and simulation result. The muffler has simple structure and high practicability, which will have a wide application prospect in noise control engineering.
      Corresponding author: Yang Yu-Zhen, yangyuzhen@mail.ioa.ac.cn ; Deng Ke, dengke@jsu.edu.cn
    • Funds: Project supported by the Science and Technology Research and Development Program of China National Railway Group Co. LTD (Grant No. P2021J035).
    [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Allard J, Atalla N 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (2nd Ed.) (Hoboken: John Wiley & Sons) p15

    [3]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [4]

    Yang Z, Dai H M, Chan N H, Ma G C, Sheng P 2010 Appl. Phys. Lett. 96 041906Google Scholar

    [5]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [6]

    Soto G, Castro A, Vechiatti N, Lasi F, Armas A, Marcovich N E, Mosiewicki M A 2017 Polym. Test. 57 42Google Scholar

    [7]

    Cai X B, Guo Q Q, Hu G K, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [8]

    Chen C R, Du Z B, Hu G K, Yang J 2017 Appl. Phys. Lett. 110 221903Google Scholar

    [9]

    刘志恩, 吴旭昌, 杜松泽, 黄涛, 卢炽华, 阮杰, 邵炯炀, 刘国强 2019 数字制造科学 6 143

    Liu Z E, Wu X C, Du S Z, Huang T, Lu Z H, Ruan J, Shao J Y, Liu G Q 2019 Digit. Manu. Sci. 6 143

    [10]

    Shao C, Zhu Y Z, Long H Y, Liu C, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 083504Google Scholar

    [11]

    Gu Y, Long H Y, Cheng Y, Deng M X, Liu X J 2021 Phys. Rev. Appl. 16 014021Google Scholar

    [12]

    Nguyen H, Wu Q, Xu X C, Chen H, Tracy S, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [13]

    Sun M, Fang X S, Mao D X, Wang X, Li Y 2020 Phys. Rev. Appl. 13 044028Google Scholar

    [14]

    Shao C, Xiong W, Long H Y, Tao J C, Cheng Y, Liu X J 2021 J. Acoust. Soc. Am. 150 1044Google Scholar

    [15]

    Dong R Z, Mao D X, Wang X, Li Y 2021 Phys. Rev. Appl. 15 024044Google Scholar

    [16]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [17]

    Shen L, Zhu Y F, Mao F L, Gao S Y, Su Z H, Luo Z T, Zhang H, Assouar B 2021 Phys. Rev. Appl. 16 064057Google Scholar

    [18]

    Gao Y X, Cheng Y, Liang B, Li Y, Yang J, Cheng J C 2021 Sci. China-Phys. Mech. Astron. 64 1

    [19]

    Liu C K, Wang H J, Liang B, Cheng J C, Lai Y 2022 Appl. Phys. Lett. 120 231702Google Scholar

    [20]

    Yu Y C, Yang Y Z, Zhao H, Shi Q Q, Kong P, Yang J, Deng K 2022 J. Appl. Phys. 131 135102Google Scholar

    [21]

    Zhu Y Z, Long H Y, Liu C, Zhang H X, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 141701Google Scholar

    [22]

    Selamet A, Lee I 2003 J. Acoust. Soc. Am. 113 1975Google Scholar

    [23]

    Ji J, Li D T, Li Y, Jing Y 2020 Front. Mech. Eng-Switz. 6 94

    [24]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [25]

    Romero-Garc V, Theocharis G, Richoux O, Pagneux V 2016 J. Acoust. Soc. Am. 139 3395Google Scholar

    [26]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [27]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [28]

    Ryoo H, Jeon W 2018 Appl. Phys. Lett. 113 121903Google Scholar

    [29]

    Chen J S, Chen Y B, Cheng Y H, Chou L C 2020 Phys. Lett. A 384 126887Google Scholar

    [30]

    Liu C R, Wu J H, Ma F Y, Chen X, Yang Z R 2019 J. Phys. D: Appl. Phys. 52 105302Google Scholar

    [31]

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhou J, Li Y 2020 Sci. Bull. 65 373Google Scholar

    [32]

    Jiménez N, Groby J P, Romero-García V 2021 Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media (Cham: Springer International Publishing) p103

    [33]

    康钟绪 2009 博士学位论文 (太原: 山西大学)

    Kang Z X 2009 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [34]

    龙厚友 2019 博士学位论文 (南京: 南京大学)

    Long H Y 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

  • 图 1  (a)二阶共鸣器的三维截面示意图; (b)二维结构示意图及几何参数

    Figure 1.  (a) 3D cross-sectional schematic diagram of second-order resonator; (b) 2D structure schematic diagram and geometrical parameters.

    图 2  二阶共鸣器单元在波导管侧壁作为消声器的三维仿真示意图(a)和实验测量示意图(b); 1号(c)和2号(d)二阶共鸣器单元的数值计算、仿真计算与实验测量的传递损失结果对比数据图

    Figure 2.  3D simulation schematic diagram (a) and experimental test diagram (b) of the second-order resonator as a muffler on the side of a waveguide; transmission loss results of the numerical calculation, simulation calculation and experimental measurement of No. 1 (c) and No. 2 (d) second-order resonators, respectively.

    图 3  (a) 传统共鸣器; (b) 二阶共鸣器; (c) 仿真计算的传递损失结果对比图

    Figure 3.  (a) Schematic diagram of traditional resonator; (b) schematic diagram of second-order resonator; (c) transmission loss results of structures corresponding to (a), (b).

    图 4  (a)—(c) 表3中不同腔体深度分布的二阶共鸣器单元结构示意图; (d) 仿真计算的3个二阶共鸣器单元传递损失结果对比图

    Figure 4.  (a)–(c) Schematics of second-order resonators with different cavity depths shown in Table 3; (d) transmission loss results of structures corresponding to Fig. 4(a), (b) and (c).

    图 5  (a) 不同第一内插管半径$ {r}_{\rm{n}}^{1} $的传输损失曲线; (b) 不同第一内插管长度$ {l}_{\rm{n}}^{1} $的传输损失曲线; (c) 不同第二内插管半径$ {r}_{\rm{n}}^{2} $的传输损失曲线; (d) 不同第二内插管长度$ {l}_{\rm{n}}^{2} $的传输损失曲线

    Figure 5.  (a) Transmission loss curves of different $ {r}_{\rm{n}}^{1} $; (b) transmission loss curves of different $ {l}_{\rm{n}}^{1} $; (c) transmission loss curves of different $ {r}_{\rm{n}}^{2} $; (d) transmission loss curves of different $ {l}_{\rm{n}}^{2} $.

    图 6  (a)由9个二阶共鸣器单元组成的抗性消声器仿真模型; (b) 实验测试图; (c) 实验测量与Comsol Multiphysics仿真、Matlab计算结果的传递损失对比图

    Figure 6.  (a) The simulation model of the resistant muffler composed of nine second-order resonators; (b) experimental measurement photo; (c) transmission loss curves of experimental measurement, simulation with Comsol Multiphysics and calculation with Matlab.

    表 1  两个二阶共鸣器单元的几何参数表

    Table 1.  Geometrical parameters of two 2nd-order resonators.

    NO.$ {S}_{\rm{c}} $/mm2$ {l}_{\rm{n}}^{1} $, $ {l}_{\rm{n}}^{2} $/mm$ {l}_{\rm{c}}^{1} $/mm$ {l}_{\rm{c}}^{2} $/mm$ {r}_{\rm{n}}^{1} $/mm$ {r}_{\rm{n}}^{2} $/mm
    1100×1001070304020
    2115×10010703042.520
    DownLoad: CSV

    表 2  图3(a), (b)中三维结构的几何参数及共振峰结果表

    Table 2.  Geometrical parameters and resonance peak results of the structures in Fig. 3(a), (b).

    类型$ {l}_{\rm{c}}^{1} $/mm$ {l}_{\rm{c}}^{2} $/mm$ {l}_{\rm{n}}^{1} $/mm$ {r}_{\rm{n}}^{1} $/mm$ {l}_{\rm{n}}^{2} $/mm$ {r}_{\rm{n}}^{2} $/mm$ {f}_{1} $/Hz$ {f}_{2} $/Hz$ {\rm{T}\rm{L}}_{f1} $/dB$ {\rm{T}\rm{L}}_{f2} $/dB
    一阶100202029929.4
    二阶50502020201020150029.337.1
    DownLoad: CSV

    表 3  图4(a)(c)中三维结构的几何参数及共振峰结果表

    Table 3.  Geometrical parameters and resonance peak results of the structures in Fig. 4(a)-(c).

    No.$ {l}_{\rm{c}}^{1} $/mm$ {l}_{\rm{c}}^{2} $/mm$ {f}_{1} $/Hz$ {f}_{2} $/Hz$ {\rm{T}\rm{L}}_{f1} $/dB$ {\rm{T}\rm{L}}_{f2} $/dB
    1406018854530.736.4
    2505020150029.337.1
    3604021946734.738.8
    DownLoad: CSV

    表 4  9个二阶共鸣器单元的几何参数表

    Table 4.  Geometrical parameters of nine second-order resonators.

    No.$ {S}_{\rm{c}} $/mm2$ {r}_{\rm{n}}^{1} $/mm$ {r}_{\rm{n}}^{2} $/mm
    1100×1004020
    2115×10042.520
    3130×10042.521
    4145×1004321
    5160×1004321
    6175×1004320
    7190×1004120
    8205×1004115
    9220×1004115
    DownLoad: CSV
  • [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Allard J, Atalla N 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (2nd Ed.) (Hoboken: John Wiley & Sons) p15

    [3]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [4]

    Yang Z, Dai H M, Chan N H, Ma G C, Sheng P 2010 Appl. Phys. Lett. 96 041906Google Scholar

    [5]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [6]

    Soto G, Castro A, Vechiatti N, Lasi F, Armas A, Marcovich N E, Mosiewicki M A 2017 Polym. Test. 57 42Google Scholar

    [7]

    Cai X B, Guo Q Q, Hu G K, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [8]

    Chen C R, Du Z B, Hu G K, Yang J 2017 Appl. Phys. Lett. 110 221903Google Scholar

    [9]

    刘志恩, 吴旭昌, 杜松泽, 黄涛, 卢炽华, 阮杰, 邵炯炀, 刘国强 2019 数字制造科学 6 143

    Liu Z E, Wu X C, Du S Z, Huang T, Lu Z H, Ruan J, Shao J Y, Liu G Q 2019 Digit. Manu. Sci. 6 143

    [10]

    Shao C, Zhu Y Z, Long H Y, Liu C, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 083504Google Scholar

    [11]

    Gu Y, Long H Y, Cheng Y, Deng M X, Liu X J 2021 Phys. Rev. Appl. 16 014021Google Scholar

    [12]

    Nguyen H, Wu Q, Xu X C, Chen H, Tracy S, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [13]

    Sun M, Fang X S, Mao D X, Wang X, Li Y 2020 Phys. Rev. Appl. 13 044028Google Scholar

    [14]

    Shao C, Xiong W, Long H Y, Tao J C, Cheng Y, Liu X J 2021 J. Acoust. Soc. Am. 150 1044Google Scholar

    [15]

    Dong R Z, Mao D X, Wang X, Li Y 2021 Phys. Rev. Appl. 15 024044Google Scholar

    [16]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [17]

    Shen L, Zhu Y F, Mao F L, Gao S Y, Su Z H, Luo Z T, Zhang H, Assouar B 2021 Phys. Rev. Appl. 16 064057Google Scholar

    [18]

    Gao Y X, Cheng Y, Liang B, Li Y, Yang J, Cheng J C 2021 Sci. China-Phys. Mech. Astron. 64 1

    [19]

    Liu C K, Wang H J, Liang B, Cheng J C, Lai Y 2022 Appl. Phys. Lett. 120 231702Google Scholar

    [20]

    Yu Y C, Yang Y Z, Zhao H, Shi Q Q, Kong P, Yang J, Deng K 2022 J. Appl. Phys. 131 135102Google Scholar

    [21]

    Zhu Y Z, Long H Y, Liu C, Zhang H X, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 141701Google Scholar

    [22]

    Selamet A, Lee I 2003 J. Acoust. Soc. Am. 113 1975Google Scholar

    [23]

    Ji J, Li D T, Li Y, Jing Y 2020 Front. Mech. Eng-Switz. 6 94

    [24]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [25]

    Romero-Garc V, Theocharis G, Richoux O, Pagneux V 2016 J. Acoust. Soc. Am. 139 3395Google Scholar

    [26]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [27]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [28]

    Ryoo H, Jeon W 2018 Appl. Phys. Lett. 113 121903Google Scholar

    [29]

    Chen J S, Chen Y B, Cheng Y H, Chou L C 2020 Phys. Lett. A 384 126887Google Scholar

    [30]

    Liu C R, Wu J H, Ma F Y, Chen X, Yang Z R 2019 J. Phys. D: Appl. Phys. 52 105302Google Scholar

    [31]

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhou J, Li Y 2020 Sci. Bull. 65 373Google Scholar

    [32]

    Jiménez N, Groby J P, Romero-García V 2021 Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media (Cham: Springer International Publishing) p103

    [33]

    康钟绪 2009 博士学位论文 (太原: 山西大学)

    Kang Z X 2009 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [34]

    龙厚友 2019 博士学位论文 (南京: 南京大学)

    Long H Y 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

  • [1] Sui Yu-Mei, He Zhao-Jian, Bi Ren-Gui, Kong Peng, Wu Ji-En, Zhao He-Ping, Deng Ke. Ultrathin acoustic metasurface carpet cloaking based on Helmholtz resonances. Acta Physica Sinica, 2024, 73(6): 064301. doi: 10.7498/aps.73.20231706
    [2] Pang Nai-Qi, Wang Yin, Ge Yong, Shi Bin-Jie, Yuan Shou-Qi, Sun Hong-Xiang. Broadband acoustic triggers based on multiport waveguide structures. Acta Physica Sinica, 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [3] Li Ting, Wu Feng-Min, Zhang Tong-Tao, Wang Jun-Jun, Yang Bin, Zhang Dong. A low-frequency wideband ventilation muffler based on an embedded rough-necked Helmholtz resonator. Acta Physica Sinica, 2023, 72(22): 224301. doi: 10.7498/aps.72.20231047
    [4] Liu Hai-Ping, Zhang Shi-Cheng, Men Ling-Ling, He Zhen-Qiang. Theoretical analysis and experimental evaluation of vibration isolation system with broadband characteristic for laser tracker. Acta Physica Sinica, 2022, 71(16): 160701. doi: 10.7498/aps.71.20220307
    [5] Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian. Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate. Acta Physica Sinica, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [6] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Chen Xin. Sound insulation performance of Helmholtz cavity with thin film bottom. Acta Physica Sinica, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [7] Gao Dong-Bao, Liu Xuan-Jun, Tian Zhang-Fu, Zhou Ze-Min, Zeng Xin-Wu, Han Kai-Feng. A broadband low-frequency sound insulation structure based on two-dimensionally inbuilt Helmholtz resonator. Acta Physica Sinica, 2017, 66(1): 014307. doi: 10.7498/aps.66.014307
    [8] Wang Chun-Ni, Wang Ya, Ma Jun. Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica, 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [9] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [10] Gao Dong-Bao, Zeng Xin-Wu, Zhou Ze-Min, Tian Zhang-Fu. Experiments on defect mode of one-dimensional phononic crystal containing Helmholtz resonators. Acta Physica Sinica, 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [11] Zhou Rui, Zhang Jing, Hu Man-Li, Feng Zhong-Yao, Gao Hong, Yang Yang, Zhang Jing-Hua, Qiao Xue-Guang. A vibration detection system based on two-stage polarization maintaining fiber Sagnac loop fiber laser. Acta Physica Sinica, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [12] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Bai Peng, Peng Wei-Dong, Lin Bao-Qin. Design of a wide-band metamaterial absorber based on loaded magnetic resonators. Acta Physica Sinica, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [13] Yan Hui, Jiang Hong-Yuan, Liu Wen-Jian, Hao Zhen-Dong, Ulannov A. M.. Analysis of acceleration response of metal rubber isolator under random vibration. Acta Physica Sinica, 2010, 59(6): 4065-4070. doi: 10.7498/aps.59.4065
    [14] Yan Hui, Jiang Hong-Yuan, Liu Wen-Jian, Ulannov A. M.. Identification of parameters for metal rubber isolator with hysteretic nonlinearity characteristics. Acta Physica Sinica, 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [15] Wang Ze-Feng, Hu Yong-Ming, Luo Hong, Meng Zhou, Ni Ming, Xiong Shui-Dong. Influence of cavity wall elasticity on resonant frequency of small underwater cylindrical Helmholtz resonator. Acta Physica Sinica, 2009, 58(4): 2507-2512. doi: 10.7498/aps.58.2507
    [16] Zhang Ruo-Bing, Ma Jing, Pang Dong-Qing, Sun Jing-Hua, Wang Qing-Yue. . Acta Physica Sinica, 2002, 51(2): 262-269. doi: 10.7498/aps.51.262
    [17] Zheng Yuan, Yu Li, Yang Bo-Jun, Zhang Xiao-Guang. Three stage polarization mode dispersion compensator capable of compensating second order polarization mode dispersion. Acta Physica Sinica, 2002, 51(12): 2745-2749. doi: 10.7498/aps.51.2745
    [18] ZHANG RUO-BING, SUN JING-HUA, PANG DONG-QING, CHAI LU, WANG QING-YUE. ANALYTICAL EXPRESSION OF SECOND-ORDER AND THIRD ORDER DISPERSIONS IN THREE-ELEMENT RESONATOR USED FOR KERR LENS MODE-LOCKING . Acta Physica Sinica, 2001, 50(5): 897-903. doi: 10.7498/aps.50.897
    [19] ZHANG JIA-SHU, XIAO XIAN-CI. A REDUCED PARAMETER SECOND-ORDER VOLTERRA FILTER WITH APPLICATION TO NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES. Acta Physica Sinica, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
    [20] FENG YU-ZHENG, CAI XIU-LAN, ZHENG DA-RUI, LIU CHANG-HAI. A NEW METHOD FOR MEASURING SOUND INSULATION OF LIGHT STRUCTURES. Acta Physica Sinica, 1978, 27(5): 516-523. doi: 10.7498/aps.27.516
Metrics
  • Abstract views:  4467
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  11 July 2022
  • Accepted Date:  13 August 2022
  • Available Online:  29 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回