Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method of diagnosing broadband microwave reflection of plasma sheath

Yang Min Wang Jia-Ming Qi Kai-Xuan Li Xiao-Ping Xie Kai Zhang Qiong-Jie Liu Hao-Yan Dong Peng

Citation:

Method of diagnosing broadband microwave reflection of plasma sheath

Yang Min, Wang Jia-Ming, Qi Kai-Xuan, Li Xiao-Ping, Xie Kai, Zhang Qiong-Jie, Liu Hao-Yan, Dong Peng
PDF
HTML
Get Citation
  • During the re-entry process of the aircraft, a layer of plasma sheath wrapping its surface will be generated, which will lead the communication quality to deteriorate and even interrupt, resulting in the phenomenon of “radio blackout”. The “radio blackout” problem has plagued the aerospace industry for many years. One of the very important reasons is the lack of awareness of the communication transmission environment caused by the limitations of plasma sheath measurements. Therefore, the realization of in-situ measurement of sheath parameters is the key to the research of the “radio blackout” problem of hypersonic vehicles.In this work, a broadband microwave reflection method is presented and developed for diagnosing the reentry plasma sheath .The relationship between broadband microwave reflection data and plasma parameters is derived theoretically, and effective diagnostic frequency points are selected. Then, the plasma parameters are obtained by inversely using the reflection data of the selected effective frequency points to realize the simultaneous diagnosis and measurement of electron density and collision frequency.This method makes up for the deficiency that the traditional reflectometer cannot diagnose high collision frequency plasma, and it can diagnose the parameter of the plasma sheath of the hypersonic vehicle in a complex environment.A simulation model and an experimental platform are established, and the simulation analysis and ground experiment are carried out to verify the method. The electron density of the plasma is diagnosed by transmission diagnostics to provide a control for reflection experiments. The experimental results show that the difference between the two diagnostic results is small, which verifies the effectiveness of the method.The method can realize the real-time diagnosis of plasma sheaths of re-entry vehicles or hypersonic vehicles under various flight conditions, and accumulate a large number of first-hand measurement data, which is of great scientific value in recognizing the characteristics of plasma sheaths comprehensively, objectively and accurately. It can also be used for the parameter input link of the adaptive measurement and control system environment. In addition, this method can also be used for real-time measurement of environment parameters of ground plasma jet and real-time monitoring of changes of plasma jet parameters without changing the jet shape.
      Corresponding author: Wang Jia-Ming, jmwang_6@stu.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071355).
    [1]

    Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, USA, August 20–23, 2007, AIAA 2007–6633

    [2]

    Rybak J, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7(5) 879

    [3]

    Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J. Appl. Phys. 119 023301Google Scholar

    [4]

    杨敏 2014 博士学位论文 (西安: 西安电子科技大学)

    Yang M 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Akey N D, Schroeder L C 1973 J. Spacecr. Rockets 10 170Google Scholar

    [6]

    Boris D R, Fernsler R F, Walton S G 2015 Plasma Sources Sci. Technol. 24 025032Google Scholar

    [7]

    Saifutdinov A I,  Sysoev S S 2022 Instrum. Exp. Tech. 65 75Google Scholar

    [8]

    赵国利 2010博士学位论文 (大连: 大连理工大学)

    Zhao G L 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [9]

    陈宗胜, 林志丹, 时家明, 马丽芳 2015 真空科学与技术学报 35 646

    Chen Z S, Lin Z D, Shi J M, Ma F L 2015 Chinese Journal of Vacuum Science and Technology 35 646

    [10]

    Berchtikou A, Lavoie J, Poenariu V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 24Google Scholar

    [11]

    Shi J, Guo Y C, Xiao S L, Qian F, Yang Z H 2017 Nucl. Instrum. Methods Phys. Res. A866 72

    [12]

    李斌 2010 博士论文 (合肥: 中国科学技术大学)

    Li B 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    莫少奇 2016 博士论文 (成都: 电子科技大学)

    Mo S Q 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [14]

    袁忠才, 时家明 2005 核聚变与等离子体物理 25 78

    Yuan Z C, Shi J M 2005 Nuclear Fusion and Plasma Physics 25 78

    [15]

    王甲寅, 时家明, 袁忠才 2007 强激光与粒子束 2007 621

    Wang J Y, Shi J M, Yuan Z C 2007 High Power Laser and Particle Beams 2007 621

    [16]

    刘荣明, 吴慎将, 苏俊宏, 徐均琪, 王可瑄 2019 西安工业大学学报 39 521

    Liu Y M, Wu S J, Su J H, Xu J Q, Wang K X 2019 Journal of Xi’an Technological University 39 521

    [17]

    Ermak G P, Varavin A V, Vasilev A S, Fateev A V, Varavin N V, Zacek V, Zajac J, Zorenko A V 2016 Telecommun. Radio Eng. 76 903

    [18]

    Janson S 1994 25th Plasmadynamics & Lasers Conference Colorado Springs, USA, June 20–23, 1994 ppAIAA-94-2424

    [19]

    Ohler S G, Gilchrist B E, Gallimore A D 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar

    [20]

    Anabitarte E, Bustamante E G, Calderón M A G, Senties J M 1987 J. Infrared MillimeterWaves 8 733

    [21]

    李建刚 2016 物理 45 88

    Li J G 2016 Physics 45 88

    [22]

    金兹堡 著 (钱善瑎 译) 1978 电磁波在等离子体中的传播 (北京: 科学出版社) 第5—9页, 第22—30页, 第85—87页

    Ginzburg (translated by Qian S X) 1978 Propagation of electromagnetic wave in plasma (Beijing: Science Press) pp5–9, pp22–30, pp85–87 (in Chinese)

    [23]

    Zhao C W, Li X P, Yang M, Sun C 2020 Microwave Opt. Technol. Lete. 63 205

  • 图 1  带有等离子体鞘套的等效传输线路的计算模型

    Figure 1.  Calculation model of equivalent transmission lines with plasma sheath.

    图 2  不同碰撞频率下反射系数和透射系数的幅度-频率曲线

    Figure 2.  Amplitude-frequency curve of reflection coefficients and transmission coefficients with different electron-neutral collision frequencies.

    图 3  带有等离子体鞘套的等效传输线简化模型

    Figure 3.  Reduced model of equivalent transmission lines with plasma sheath.

    图 4  有效诊断频段选择

    Figure 4.  Selection of effective diagnostic frequency band.

    图 5  不同碰撞频率下$a(\omega )$实部曲线

    Figure 5.  Curve of real component of α(ω) with different electron-neutral collision frequencies.

    图 6  VVD天线CST模型

    Figure 6.  CST model of VVD antenna.

    图 7  数据标定流程

    Figure 7.  Data calibration process

    图 8  反解流程

    Figure 8.  Reverse solution process

    图 9  电磁仿真模型

    Figure 9.  Electromagnetic simulation model of plasma.

    图 10  电子密度$ {n}_{\rm{e}} $ = 3×1011cm–3 (a) 反射系数幅度; (b) 有效频点选择; (c) 反解结果

    Figure 10.  Electron density $ {n}_{\rm{e}} $ = 3×1011cm–3: (a) Magnitude of reflection coefficient; (b) selection of effective frequency points; (c) inverse solution result.

    图 11  碰撞频率$ {v}_{\rm{e}} $ = 1 GHz (a) 反射系数幅度; (b) 有效频点选择; (c) 反解结果

    Figure 11.  Collision frequency$ {v}_{\rm{e}} $ = 0.1 GHz: (a) Magnitude of reflection coefficient; (b) selection of effective frequency points; (c) inverse solution result.

    图 12  电阻负载式小型双层Vivaldi天线 (a) CST仿真模型; (b) 待用天线的照片; (c) 带耐热透波陶瓷材料的天线照片

    Figure 12.  The resistance loaded miniaturized dual-Layer Vivaldi antenna: (a) CST simulation model; (b) photograph of proposed antenna; (c) photograph of proposed antenna with heat resistant wave-transparent composites.

    图 13  (a)宽带微波反射等离子体诊断实验配置俯视图; (b)微波反射等离子体诊断装置的安装图

    Figure 13.  (a) Top view of broadband microwave reflectometry plasma diagnostic system; (b) erection diagram of broadband microwave reflectometry plasmadiagnostic system in vacuum chamber.

    图 14  不同输入功率下时-频-反射系数图 (a)状态1; (b)状态2; (c)状态3; (d)状态4; (e)状态5; (f)状态6

    Figure 14.  Images of time, frequency and reflection coefficient amplitude with different input power: (a) Status 1; (b) Status 2; (c) Status 3; (d) Status 4; (e) Status 5; (f) Status 6.

    图 15  状态3 (a) 反射系数幅度; (b) 有效频点选择; (c) 反解结果

    Figure 15.  Status 3: (a) Magnitude of reflection coefficient; (b) selection of effective frequency points; (c) inverse solution result.

    表 1  诊断结果

    Table 1.  Diagnostic results.

    仿真设置值诊断结果$ {n_{\text{e}}} $/cm–3诊断误差/%诊断结果$ {v_{{\text{en}}}} $/GHz诊断误差/%
    $ {n_{\text{e}}} $/cm–3$ {v_{{\text{en}}}} $/GHz
    1×10101$ < $5×1010
    1×10111.283×101128.30.931–6.9
    3×10113.181×10116.031.0505.0
    5×10115.274×10115.480.896–10.4
    7×10117.435×10116.210.930–7.0
    1×10121.026×10122.600.954–4.6
    DownLoad: CSV

    表 2  诊断结果

    Table 2.  Diagnostic results.

    仿真设置值诊断结果 $ {n_{\text{e}}} $/1011 cm–3诊断误差/%诊断结果 $ {v_{{\text{en}}}} $/GHz诊断误差/%
    $ {n_{\text{e}}} $/cm–3${v_{ {\text{en} } } }$/GHz
    3×10110.1$ 3 $.35511.80.083516.4
    1.03.1816.031.05005.0
    5.02.8873.773.606027.8
    DownLoad: CSV

    表 3  不同输入功率下(不同等离子体状态)反射计诊断结果

    Table 3.  Diagnostic results of reflectometer in different input power (different plasma states).

    状态功率/kW电压/kV电流/A反射计诊断结果/(1011 cm–3)碰撞频率/GHz透射法诊断结果/(1011 cm–3)
    状态21206.0200.70822.1981.404
    状态31547.0221.56201.3091.982
    状态41807.5242.10000.8813.442
    状态52088.0265.51500.2387.958
    状态62529.028>10.00009.358
    DownLoad: CSV
  • [1]

    Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, USA, August 20–23, 2007, AIAA 2007–6633

    [2]

    Rybak J, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7(5) 879

    [3]

    Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J. Appl. Phys. 119 023301Google Scholar

    [4]

    杨敏 2014 博士学位论文 (西安: 西安电子科技大学)

    Yang M 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Akey N D, Schroeder L C 1973 J. Spacecr. Rockets 10 170Google Scholar

    [6]

    Boris D R, Fernsler R F, Walton S G 2015 Plasma Sources Sci. Technol. 24 025032Google Scholar

    [7]

    Saifutdinov A I,  Sysoev S S 2022 Instrum. Exp. Tech. 65 75Google Scholar

    [8]

    赵国利 2010博士学位论文 (大连: 大连理工大学)

    Zhao G L 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [9]

    陈宗胜, 林志丹, 时家明, 马丽芳 2015 真空科学与技术学报 35 646

    Chen Z S, Lin Z D, Shi J M, Ma F L 2015 Chinese Journal of Vacuum Science and Technology 35 646

    [10]

    Berchtikou A, Lavoie J, Poenariu V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 24Google Scholar

    [11]

    Shi J, Guo Y C, Xiao S L, Qian F, Yang Z H 2017 Nucl. Instrum. Methods Phys. Res. A866 72

    [12]

    李斌 2010 博士论文 (合肥: 中国科学技术大学)

    Li B 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    莫少奇 2016 博士论文 (成都: 电子科技大学)

    Mo S Q 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [14]

    袁忠才, 时家明 2005 核聚变与等离子体物理 25 78

    Yuan Z C, Shi J M 2005 Nuclear Fusion and Plasma Physics 25 78

    [15]

    王甲寅, 时家明, 袁忠才 2007 强激光与粒子束 2007 621

    Wang J Y, Shi J M, Yuan Z C 2007 High Power Laser and Particle Beams 2007 621

    [16]

    刘荣明, 吴慎将, 苏俊宏, 徐均琪, 王可瑄 2019 西安工业大学学报 39 521

    Liu Y M, Wu S J, Su J H, Xu J Q, Wang K X 2019 Journal of Xi’an Technological University 39 521

    [17]

    Ermak G P, Varavin A V, Vasilev A S, Fateev A V, Varavin N V, Zacek V, Zajac J, Zorenko A V 2016 Telecommun. Radio Eng. 76 903

    [18]

    Janson S 1994 25th Plasmadynamics & Lasers Conference Colorado Springs, USA, June 20–23, 1994 ppAIAA-94-2424

    [19]

    Ohler S G, Gilchrist B E, Gallimore A D 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar

    [20]

    Anabitarte E, Bustamante E G, Calderón M A G, Senties J M 1987 J. Infrared MillimeterWaves 8 733

    [21]

    李建刚 2016 物理 45 88

    Li J G 2016 Physics 45 88

    [22]

    金兹堡 著 (钱善瑎 译) 1978 电磁波在等离子体中的传播 (北京: 科学出版社) 第5—9页, 第22—30页, 第85—87页

    Ginzburg (translated by Qian S X) 1978 Propagation of electromagnetic wave in plasma (Beijing: Science Press) pp5–9, pp22–30, pp85–87 (in Chinese)

    [23]

    Zhao C W, Li X P, Yang M, Sun C 2020 Microwave Opt. Technol. Lete. 63 205

  • [1] Xu Zi-Yuan, Zhou Hui, Liu Guang-Han, Gao Zhong-Liang, Ding Li, Lei Fan. Effect of three-dimensional traveling wave magnetic field on plasma sheath density. Acta Physica Sinica, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [2] Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen. Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge. Acta Physica Sinica, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [3] Chen Ze-Yu, Peng Yu-Bin, Wang Rui, He Yong-Ning, Cui Wan-Zhao. Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity. Acta Physica Sinica, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [4] Zhang Tian-Cheng, Cheng Ai-Qiang, Bao Hua-Guang, Ding Da-Zhi. Influence of static strong magnetic field on antenna radiation in hypersonic vehicle. Acta Physica Sinica, 2022, 71(8): 085202. doi: 10.7498/aps.71.20212044
    [5] Liu Hui-Ping, Zou Xiu. Effects of reflection of electrons and negative ions on magnetized electronegative and collisional plasma sheath. Acta Physica Sinica, 2020, 69(2): 025201. doi: 10.7498/aps.69.20191307
    [6] Wu Jin-Fang, Chen Zhao-Quan, Zhang Ming, Zhang Huang, Zhang San-Yang, Feng De-Ren, Zhou Yu-Ming. Measurement of time-varying electron density of air spark shock wave plasma jet by the method of microwave Rayleigh scattering. Acta Physica Sinica, 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [7] Lü Chun-Jing, Han Yi-Ping. Analysis of propagation characteristics of Gaussian beams in turbulent plasma sheaths. Acta Physica Sinica, 2019, 68(9): 094201. doi: 10.7498/aps.68.20182169
    [8] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] Bo Yong, Zhao Qing, Luo Xian-Gang, Liu Ying, Chen Yu-Xu, Liu Jian-Wei. Study on transmission characteristics of electromagnetic waves in inhomogeneously magnetized plasma sheath. Acta Physica Sinica, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [10] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Effect of collision parameter on magnetized electronegative plasma sheath structure. Acta Physica Sinica, 2016, 65(24): 245201. doi: 10.7498/aps.65.245201
    [11] Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min. Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma. Acta Physica Sinica, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [12] Liu Zhi-Wei, Bao Wei-Min, Li Xiao-Ping, Liu Dong-Lin. A segmentation calculation method for plasma collision frequency considering the electro-magnetic wave driving effect. Acta Physica Sinica, 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [13] Ding Shi-Jing, Huang Liu-Hong, Li Yue-Bo, Xue Fan-Xi. A novel free-space method of mearsuring of electromagnetic parameters based on the resonance property of reflectivity. Acta Physica Sinica, 2012, 61(22): 220601. doi: 10.7498/aps.61.220601
    [14] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [15] Li Yang-Ping, Liu Zheng-Tang. Plasma emission diagnostics for the optimization of deposition parameters in RF magnetron sputtering of GaP film. Acta Physica Sinica, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [16] Yang Juan, Xu Ying-Qiao, Zhu Liang-Ming. Diagnostic study on the electron density distribution of microwave plasma jet in local vacuum environment. Acta Physica Sinica, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [17] Xin Yu, Di Xiao-Lian, Yu Yi-Qing, Ning Zhao-Yuan. Generation of multi-source inductively coupled plasma and its diagnostics. Acta Physica Sinica, 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [18] Zhang Qiu-Ju, Sheng Zheng-Ming, Wang Xing-Hai, Man Bao-Yuan, Cang Yu, Zhang Jie. Vacancy of laser field induced by phase reflection in underdense plasmas and its relation to laser-plasma parameters. Acta Physica Sinica, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [19] WANG JIAN-HUZ, YUAN RUN-ZHANG, WU QIN-CHONG, REN ZHAO-XING. THE STUDY OF EPITAXIAL GROWTH ZnO THIN FILM ON A (0112) SAPPHIRE SUBSTRATE USING ECR PLASMA SPUTTERING METHOD. Acta Physica Sinica, 1999, 48(5): 955-960. doi: 10.7498/aps.48.955
    [20] WANG WEN-ZHONG, ZHANG TAN-XIN, HE ZHAO-TANG, GU YU-QIU, LONG YONG-LU, JIANG WEN-MIAN. DIAGNOSTICS OF ELECTRON DENSITY OF LASER-PRODU-CED PLASMA FROM THE XUV SPECTRA OF AgXIX. Acta Physica Sinica, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
Metrics
  • Abstract views:  3712
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2022
  • Accepted Date:  22 July 2022
  • Available Online:  26 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回