Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of three-dimensional traveling wave magnetic field on plasma sheath density

Xu Zi-Yuan Zhou Hui Liu Guang-Han Gao Zhong-Liang Ding Li Lei Fan

Citation:

Effect of three-dimensional traveling wave magnetic field on plasma sheath density

Xu Zi-Yuan, Zhou Hui, Liu Guang-Han, Gao Zhong-Liang, Ding Li, Lei Fan
PDF
HTML
Get Citation
  • When the vehicle travels at a hypersonic speed or during re-entry, the surface is covered by a plasma sheath. Plasma sheath can impede electromagnetic wave propagation, causing vehicle radio signals to be attenuated or even interrupted, which is communication blackout. The traveling magnetic field is a kind of magnetic field that can mitigate the communication blackout by adjusting the density of the plasma sheath. In this work, a three-dimensional traveling magnetic field generation model and a three-dimensional plasma density distribution model are established for the problem that the one-dimensional traveling magnetic field cannot accurately describe the plasma density distribution in space. The mechanism of the interaction between the traveling magnetic field and the plasma is investigated to obtain the plasma density distribution in space. The results show that applying a traveling magnetic field can generate a density reduction region of 50$\times$100 mm at the rear of the vehicle, resulting in a maximum decrease of 71% in plasma density in the region and providing continuous communication time. Meanwhile, the effects of initial density, collision frequency, traveling velocity and current magnitude on the plasma density distribution are investigated. The results show that with the increase of the initial density, the ability to regulate the plasma density is improved. However, due to the large density base, the adjusted plasma density is still higher than the plasma density of the low-density case. The increase of the collision frequency can significantly reduce the regulation effect. Increasing the traveling velocity and current can enhance the density-adjusting effect. However, further increasing the traveling velocity to above 800 m/s does not yield a more significant adjustment effect. Based on the data from the RAM-C flight test, the proposed model is used to study the effects of current magnitude and traveling velocity on the electromagnetic wave attenuation during aircraft reentry. The mitigation effect of the traveling magnetic field on electromagnetic wave attenuation is also compared with the effect of applying a static magnetic field. The results show that the applied traveling magnetic field can reduce the electromagnetic wave attenuation of the vehicle to below 30 dB in the X-band at an altitude of 30.48km, as well as in the L-, S-, C- and X-bands at other altitudes. The comparison between traveling magnetic field and static magnetic field demonstrates that the traveling magnetic field significantly outperforms the static magnetic field in mitigating electromagnetic wave attenuation.
      Corresponding author: Zhou Hui, zhouh@sdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62101310, 62304125) and the Young Scientists Fund of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2023-JC-QN-0051).
    [1]

    Bai B, Liu Y M, Li X P, Yao B, Shi L 2018 Phys. Plasmas 25 062101Google Scholar

    [2]

    Zhao Q, Xing X J, Xuan Y L, Liu S Z 2014 Plasma Sci. Technol. 16 614Google Scholar

    [3]

    Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100Google Scholar

    [4]

    Kundrapu M, Loverich J, Beckwith K, Stoltz P, Shashurin A, Keidar M, Ketsdever A 2015 J. Spacecr. Rockets 52 853Google Scholar

    [5]

    Cheng J J, Jin K, Kou Y, Hu R F, Zheng X J 2017 J. Appl. Phys. 121 093301Google Scholar

    [6]

    Xiong J, Yuan K, Tang R, Mao M, Deng X 2023 Phys. Plasmas 30 090701Google Scholar

    [7]

    刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华 2022 物理学报 71 145202Google Scholar

    Liu X Q, Liu Y, Ling Y M, Lei J H, Cao J X, Li J, Zhong Y M, Chen M, Li Y H 2022 Acta Phys. Sin. 71 145202Google Scholar

    [8]

    Yang M, Li X P, Xie K, Liu Y M 2015 Phys. Plasmas 22 022120Google Scholar

    [9]

    Belov I F, Borovoy V Y, Gorelov V A, Kireev A Y, Korolev A S, Stepanov E A 2001 J. Spacecr. Rockets 38 249Google Scholar

    [10]

    Takahashi Y, Enoki N, Takasawa H, Oshima N 2020 J. Phys. D: Appl. Phys. 53 235203Google Scholar

    [11]

    Miyashita T, Takasawa H, Takahashi Y, Steffens L, Gülhan A 2024 AIAA J. 62 437Google Scholar

    [12]

    Miyashita T, Sugihara Y, Takahashi Y, Nagata Y, Kihara, H 2024 J. Phys. D: Appl. Phys. 57 325206Google Scholar

    [13]

    Ouyang W C, Liu Q, Wu Z W 2023 Chin. J. Aeronaut. 36 137

    [14]

    Zhou H, Li X P, Xie K, Liu Y M, Yu Y Y 2017 AIP Advances 7 025114Google Scholar

    [15]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445Google Scholar

    [16]

    Kim M, Keidar M, Boyd I D 2008 IEEE Trans. Plasma Sci. 36 1198Google Scholar

    [17]

    Guo S S, Xie K, Xu H, Fu M X, Niu Y Y 2023 Plasma Sci. Technol. 25 065401Google Scholar

    [18]

    Stenzel R L, Urrutia J M 2013 J. Appl. Phys. 113 103303Google Scholar

    [19]

    Liu D, Li X, Liu Y, Xu J, Lei F, Chen X 2018 AIP Advances 8 085020Google Scholar

    [20]

    Xu J H, Li X P, Liu D L, Wang Y 2021 Plasma Sci. Technol. 23 075301Google Scholar

    [21]

    Han M Y, Li Z M, Zhou H, Li Z Y, Liu G H, Xu Z Y, Liu Z 2024 IEEE Trans. Plasma Sci. 52 259Google Scholar

    [22]

    Guo S S, Xie K, Sun B, Liu S W 2020 Plasma Sci. Technol. 22 125301Google Scholar

    [23]

    Soliman E A, Helaly A, Megahed A A 2007 Prog. Electromagn. Res. 67 25Google Scholar

    [24]

    Liu D L, Li X P, Liu Y M, Xu J H, Lei F, Chen X 2018 AIP Advances 8 085803

    [25]

    Kim M 2009 Ph.D. Dissertation (Ann Arbor: University of Michigan

    [26]

    Zhou H, Li X P, Xie K, Liu Y M, Yao B, Ai W 2017 AIP Advances 7 105314Google Scholar

    [27]

    Xu J H, Li X P, Liu D L, Xu C, Qin Y Q 2021 Phys. Plasmas 28 042509Google Scholar

    [28]

    Rawhouser R 1970 Overview of the AF Avionics Laboratory Reentry Electromagnetics Program Hampton, VA, October 13, 1970 p3

    [29]

    Ouyang W C, Ding C B, Liu Q, Lu Q M, Wu Z W 2023 Results Phys. 53 106983Google Scholar

    [30]

    Wu X, Zhang J H, Dong G X, Shi L 2024 Chin. Phys. B 33 055201Google Scholar

    [31]

    杨敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏 2022 物理学报 71 235201Google Scholar

    Yang M, Wang J M, Qi K X, Li X P, Xie K, Zhang Q J, Liu H Y, Dong P 2022 Acta Phys. Sin. 71 235201Google Scholar

  • 图 1  TMF调控等离子体密度的三维模型示意图

    Figure 1.  Schematic of the three-dimensional model of the plasma density regulated by TMF

    图 2  TMF产生装置结构图

    Figure 2.  Structural diagram of TMF generator

    图 3  矩形线圈的空间直角坐标系

    Figure 3.  Spatial cartesian coordinate system for rectangular coil

    图 4  仿真模型示意图

    Figure 4.  Schematic diagram of the simulation model

    图 5  初始等离子体密度分布 (a)等离子体密度沿Z轴的一维分布; (b)等离子体密度在空间中的三维分布

    Figure 5.  Initial plasma density distribution: (a) One-dimensional distribution of plasma density along the Z-axis; (b) three-dimensional distribution of plasma density in space

    图 6  磁通密度大小与分布 (a)磁通密度随电流变化的曲线; (b)磁通密度最大值与距离飞行器表面的高度的关系

    Figure 6.  Magnitude and distribution of magnetic flux density: (a) Curve of flux density as a function of current; (b) flux density maximum as a function of height from the surface of the vehicle

    图 7  磁通密度在空间中的分布 (a) XOY截面; (b) XOZ截面; (c) (175, 50, 25)处磁通密度随时间变化的曲线

    Figure 7.  The distribution of magnetic flux density in space: (a) XOY section; (b) XOZ section; (c) curve of magnetic flux density as a function of time at (175, 50, 25)

    图 8  电磁力随时间变化的曲线

    Figure 8.  Curve of electromagnetic force as a function of time

    图 9  4个时间点的电磁力大小和方向示意图 (a) $1\times10^{-6} \;{\mathrm{s}}$; (b)$3\times10^{-5} \;{\mathrm{s}} $; (c)$5\times10^{-5} \;{\mathrm{s}} $; (d)$1.2\times10^{-4} \;{\mathrm{s}} $

    Figure 9.  Schematic representation of the magnitude and direction of the electromagnetic force at four points in time: (a)$1\times10^{-6} \;{\mathrm{s}} $; (b)$3\times10^{-5} \;{\mathrm{s}} $; (c)$ 5\times10^{-5} \;{\mathrm{s}} $; (d)$1.2\times10^{-4} \;{\mathrm{s}} $

    图 10  等离子体密度随时间的变化趋势

    Figure 10.  Trends in plasma density over time

    图 11  等离子体密度沿不同方向的取值示意图和变化曲线 (a)等离子体密度取值示意图; (b)沿X轴取值; (c)沿Y轴取值; (d)沿Z轴取值

    Figure 11.  Schematic diagram of plasma density values along different directions: (a) Schematic diagram of plasma density taking values; (b) values along the X-axis; (c) values along the Y-axis; (d) values along the Z-axis

    图 12  初始密度对等离子密度削弱的影响

    Figure 12.  Effect of initial density on plasma density reduction

    图 13  碰撞频率对等离子体密度削弱的影响

    Figure 13.  Effect of collision frequency on plasma density reduction

    图 14  行波速度对等离子体密度削弱的影响

    Figure 14.  Effect of traveling velocity on plasma density reduction

    图 15  电流对等离子体密度削弱的影响

    Figure 15.  Effect of current on plasma density reduction

    图 16  阶段1施加TMF对电磁波衰减的影响 (a)电流对电磁波衰减的影响; (b)行波速度对电磁波衰减的影响

    Figure 16.  Effect of applying TMF on EM wave attenuation in phase 1: (a) Effect of current on the attenuation of EM waves; (b) effect of traveling velocity on the attenuation of EM waves

    图 17  阶段2施加TMF对电磁波衰减的影响 (a)电流对电磁波衰减的影响; (b)行波速度对电磁波衰减的影响

    Figure 17.  Effect of applying TMF on EM wave attenuation in phase 2: (a) Effect of current on the attenuation of EM waves; (b) effect of traveling velocity on the attenuation of EM waves

    图 18  阶段3施加TMF对电磁波衰减的影响 (a)电流对电磁波衰减的影响; (b)行波速度对电磁波衰减的影响

    Figure 18.  Effect of applying TMF on EM wave attenuation in phase 3: (a) Effect of current on the attenuation of EM waves; (b) effect of traveling velocity on the attenuation of EM waves

    图 19  阶段4施加TMF对电磁波衰减的影响 (a)电流对电磁波衰减的影响; (b)行波速度对电磁波衰减的影响

    Figure 19.  Effect of applying TMF on EM wave attenuation in phase 4: (a) Effect of current on the attenuation of EM waves; (b) effect of traveling velocity on the attenuation of EM waves

    图 20  TMF与外加静磁场的效果对比 (a) L波段; (b) S波段; (b) C波段; (b) X波段

    Figure 20.  Comparison of the effect of TMF with applied static magnetic field: (a) L-band; (b) S-band; (b) C-band; (b) X-band

    表 1  RAM-C飞行试验中不同高度下的等离子体鞘套参数

    Table 1.  Plasma sheath parameters at different altitudes in the RAM-C flight test

    再入过程 海拔/km 气压/Pa 等离子体密度/$ {\mathrm{m}}^{-3} $ 碰撞频率/GHz 等离子体鞘套厚度/cm
    阶段1 76.2 2 $ 4.02\times 10^{16} $ 0.005 14.0
    71.02 17 $ 1\times 10^{17} $ 0.012 11.2
    阶段2 61.57 25 $ 4.037\times 10^{17} $ 0.050 7.8
    53.34 55 $ 6.86\times 10^{17} $ 0.175 7.0
    47.55 288 $ 1.02\times 10^{18} $ 0.420 5.8
    阶段3 30.48 1197 $ 1\times 10^{19} $ 5.710 6.8
    阶段4 25.01 2094 $ 5\times 10^{18} $ 13.18 5.4
    21.34 4085 $ 5.03\times 10^{16} $ 23.00 5.3
    DownLoad: CSV
  • [1]

    Bai B, Liu Y M, Li X P, Yao B, Shi L 2018 Phys. Plasmas 25 062101Google Scholar

    [2]

    Zhao Q, Xing X J, Xuan Y L, Liu S Z 2014 Plasma Sci. Technol. 16 614Google Scholar

    [3]

    Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100Google Scholar

    [4]

    Kundrapu M, Loverich J, Beckwith K, Stoltz P, Shashurin A, Keidar M, Ketsdever A 2015 J. Spacecr. Rockets 52 853Google Scholar

    [5]

    Cheng J J, Jin K, Kou Y, Hu R F, Zheng X J 2017 J. Appl. Phys. 121 093301Google Scholar

    [6]

    Xiong J, Yuan K, Tang R, Mao M, Deng X 2023 Phys. Plasmas 30 090701Google Scholar

    [7]

    刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华 2022 物理学报 71 145202Google Scholar

    Liu X Q, Liu Y, Ling Y M, Lei J H, Cao J X, Li J, Zhong Y M, Chen M, Li Y H 2022 Acta Phys. Sin. 71 145202Google Scholar

    [8]

    Yang M, Li X P, Xie K, Liu Y M 2015 Phys. Plasmas 22 022120Google Scholar

    [9]

    Belov I F, Borovoy V Y, Gorelov V A, Kireev A Y, Korolev A S, Stepanov E A 2001 J. Spacecr. Rockets 38 249Google Scholar

    [10]

    Takahashi Y, Enoki N, Takasawa H, Oshima N 2020 J. Phys. D: Appl. Phys. 53 235203Google Scholar

    [11]

    Miyashita T, Takasawa H, Takahashi Y, Steffens L, Gülhan A 2024 AIAA J. 62 437Google Scholar

    [12]

    Miyashita T, Sugihara Y, Takahashi Y, Nagata Y, Kihara, H 2024 J. Phys. D: Appl. Phys. 57 325206Google Scholar

    [13]

    Ouyang W C, Liu Q, Wu Z W 2023 Chin. J. Aeronaut. 36 137

    [14]

    Zhou H, Li X P, Xie K, Liu Y M, Yu Y Y 2017 AIP Advances 7 025114Google Scholar

    [15]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445Google Scholar

    [16]

    Kim M, Keidar M, Boyd I D 2008 IEEE Trans. Plasma Sci. 36 1198Google Scholar

    [17]

    Guo S S, Xie K, Xu H, Fu M X, Niu Y Y 2023 Plasma Sci. Technol. 25 065401Google Scholar

    [18]

    Stenzel R L, Urrutia J M 2013 J. Appl. Phys. 113 103303Google Scholar

    [19]

    Liu D, Li X, Liu Y, Xu J, Lei F, Chen X 2018 AIP Advances 8 085020Google Scholar

    [20]

    Xu J H, Li X P, Liu D L, Wang Y 2021 Plasma Sci. Technol. 23 075301Google Scholar

    [21]

    Han M Y, Li Z M, Zhou H, Li Z Y, Liu G H, Xu Z Y, Liu Z 2024 IEEE Trans. Plasma Sci. 52 259Google Scholar

    [22]

    Guo S S, Xie K, Sun B, Liu S W 2020 Plasma Sci. Technol. 22 125301Google Scholar

    [23]

    Soliman E A, Helaly A, Megahed A A 2007 Prog. Electromagn. Res. 67 25Google Scholar

    [24]

    Liu D L, Li X P, Liu Y M, Xu J H, Lei F, Chen X 2018 AIP Advances 8 085803

    [25]

    Kim M 2009 Ph.D. Dissertation (Ann Arbor: University of Michigan

    [26]

    Zhou H, Li X P, Xie K, Liu Y M, Yao B, Ai W 2017 AIP Advances 7 105314Google Scholar

    [27]

    Xu J H, Li X P, Liu D L, Xu C, Qin Y Q 2021 Phys. Plasmas 28 042509Google Scholar

    [28]

    Rawhouser R 1970 Overview of the AF Avionics Laboratory Reentry Electromagnetics Program Hampton, VA, October 13, 1970 p3

    [29]

    Ouyang W C, Ding C B, Liu Q, Lu Q M, Wu Z W 2023 Results Phys. 53 106983Google Scholar

    [30]

    Wu X, Zhang J H, Dong G X, Shi L 2024 Chin. Phys. B 33 055201Google Scholar

    [31]

    杨敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏 2022 物理学报 71 235201Google Scholar

    Yang M, Wang J M, Qi K X, Li X P, Xie K, Zhang Q J, Liu H Y, Dong P 2022 Acta Phys. Sin. 71 235201Google Scholar

  • [1] Hu Yang, Luo Jing-Yi, Cai Yu-Yan, Lu Xin-Pei. Effect of external magnetic field on helix plasma plume. Acta Physica Sinica, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [2] Yang Min, Wang Jia-Ming, Qi Kai-Xuan, Li Xiao-Ping, Xie Kai, Zhang Qiong-Jie, Liu Hao-Yan, Dong Peng. Method of diagnosing broadband microwave reflection of plasma sheath. Acta Physica Sinica, 2022, 71(23): 235201. doi: 10.7498/aps.71.20221179
    [3] Ma Ping, Han Yi-Ping, Zhang Ning, Tian De-Yang, Shi An-Hua, Song Qiang. Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model. Acta Physica Sinica, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [4] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [5] Lü Chun-Jing, Han Yi-Ping. Analysis of propagation characteristics of Gaussian beams in turbulent plasma sheaths. Acta Physica Sinica, 2019, 68(9): 094201. doi: 10.7498/aps.68.20182169
    [6] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] Li Hang,  Yang Dong,  Li San-Wei,  Kuang Long-Yu,  Li Li-Ling,  Yuan Zheng,  Zhang Hai-Ying,  Yu Rui-Zhen,  Yang Zhi-Wen,  Chen Tao,  Cao Zhu-Rong,  Pu Yu-Dong,  Miao Wen-Yong,  Wang Feng,  Yang Jia-Min,  Jiang Shao-En,  Ding Yong-Kun,  Hu Guang-Yue,  Zheng Jian. Observation of hydrodynamic phenomena of plasma interaction in hohlraums. Acta Physica Sinica, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [8] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] Bo Yong, Zhao Qing, Luo Xian-Gang, Liu Ying, Chen Yu-Xu, Liu Jian-Wei. Study on transmission characteristics of electromagnetic waves in inhomogeneously magnetized plasma sheath. Acta Physica Sinica, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [10] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [11] Qiu Ming-Hui, Liu Hui-Ping, Zou Xiu. Bohm criterion for a collisinal electronegative plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [12] Cao Zhu-Rong, Li San-Wei, Jiang Shao-En, Ding Yong-Kun, Liu Shen-Ye, Yang Jia-Min, Zhang Hai-Ying, Yang Zheng-Hua, Li Hang, Yi Rong-Qing, He Xiao-An. Plasma convergence time of radiation hohlraum with single-end drive on SG-III prototype laser facility. Acta Physica Sinica, 2010, 59(10): 7170-7174. doi: 10.7498/aps.59.7170
    [13] Zou Xiu, Ji Yan-Kun, Zou Bin-Yan. The Bohm criterion for a collisional plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [14] Luan Shi-Xia, Zhang Qiu-Ju, Gui Wei-Ling. Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas. Acta Physica Sinica, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [15] Zou Xiu. Structure of radio-frequency flat plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [16] Zou Xiu, Liu Jin-Yuan, Wang Zheng-Xiong, Gong Ye, Liu Yue, Wang Xiao-Gang. Plasma sheath in a magnetic field. Acta Physica Sinica, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [17] Xie Hong-Quan, Li Cheng-Yue, Yan Yang, Liu Sheng-Gang. Study on characteristics of helix-type traveling wave tube filled with plasma. Acta Physica Sinica, 2003, 52(4): 914-919. doi: 10.7498/aps.52.914
    [18] Gu Zhen-Yu, Ji Pei-Yong. . Acta Physica Sinica, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [19] ZENG GUI-HUA, YU WEI, SHEN BAI-FEI, XU ZHI-ZHAN. SELF-GENERATED MAGNETIC FIELDPRODUCED IN PREPLASMA CHANNEL. Acta Physica Sinica, 1997, 46(6): 1131-1136. doi: 10.7498/aps.46.1131
    [20] LU QUAN-KANG. ON PLASMA NON-CLASSICAL DIFFUSION ACROSS MAGNETIC FIELD. Acta Physica Sinica, 1978, 27(2): 229-232. doi: 10.7498/aps.27.229
Metrics
  • Abstract views:  1132
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2024
  • Accepted Date:  16 July 2024
  • Available Online:  20 July 2024
  • Published Online:  05 September 2024

/

返回文章
返回