Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in Hall thruster

Yang San-Xiang Zhao Yi-De Dai Peng Li Jian-Peng Gu Zeng-Jie Meng Wei Geng Hai Guo Ning Jia Yan-Hui Yang Jun-Tai

Citation:

Instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in Hall thruster

Yang San-Xiang, Zhao Yi-De, Dai Peng, Li Jian-Peng, Gu Zeng-Jie, Meng Wei, Geng Hai, Guo Ning, Jia Yan-Hui, Yang Jun-Tai
PDF
HTML
Get Citation
  • The free energy contained in electron drift, electron collision, and plasma density gradient, temperature, magnetic field gradient can trigger off the instabilities with different frequencies and wavelengths in hall thrusters. The instabilities will destroy the stable discharge of plasma, affecting the matching degree between the thruster and the power processing unit, and reducing the performance of the thruster. Based on this, the instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in the hall thruster are studied by using dispersion relation derived from the fluid model. The results are shown below. 1) When in the model includes the effects of electron inertia, collision between electrons and neutral atoms, and electron drift, instability can be excited at any axial position from the near anode region to the plume region of the thruster. With the increase of azimuthal wavenumber ${k_y} = 2\pi /\lambda $, the lower-hybrid mode excited by electron collision transitions into the ion sound mode, where ${k_y} = 2{\text{π }}/\lambda $, $\lambda $being the wave length. The real frequency ${\omega _{\text{r}}}$ corresponding to the maximum growth rate ${\gamma _{\max }}$ slightly decreases with collision frequency increasing for ${k_y} = 10{\text{ }}{{\text{ m}}^{ - 1}}$. However, the maximum real frequency and real frequency ${\omega _{\text{r}}}$ corresponding to the maximum growth rate ${k_y} = 300{{\text{ m}}^{ - 1}}$ will not change with collision frequency for ${k_y} = 300{\text{ }}{{\text{ m}}^{ - 1}}$. Independent of the value of ${k_y}$, the growth rate of mode triggered off by electron collision increases with collision frequency increasing. 2) The plasma density gradient effect plays a dominant role in triggering off instabilities when the electron inertia, electron-neutral collisions and plasma density gradient are simultaneously included in the model. The dynamic behavior of the model does not change with the increase of ${k_y}$, but the eigenvalue of the model increases with the ${k_y}$ increasing. Since the sign of anti-drift frequency induced by the plasma density gradient is changed, the mode eigenvalues have the opposite change trend on both sides of point ${\kappa _{\text{N}}}$. When the sign of ${\omega _r}$ and ${\omega _r}$ are opposite, the density gradient effect has a stabilization effect on instability excitation (${\kappa _{\text{N}}} > 0$). When the sign of ${\omega _{\text{s}}}$ and ${\omega _{\text{r}}}$ are the same, the density gradient effect enhances the excitation of instability (${\kappa _{\text{N}}} < 0$) . 3) If the plasma density gradient, magnetic field gradient, electron inertia and electron-neutral collisions are included in the dispersion, the mode eigenvalue relies on the electron drift frequency, and the diamagnetic drift frequency induced by the density gradient and magnetic field gradient. When the density gradient effect and the magnetic field gradient effect are considered, there is a stable window in the discharge channel. However, if the electron inertia and electron-neutral collisions are also included, the stable window will disappear.
  • 图 1  (a)归一化的电势$\phi $、等离子体密度$n$, 电场强度$E$、电子温度${T_{\text{e}}}$、磁场$B$, 离子速度${\upsilon _{\text{i}}}$, ${\boldsymbol{E}} \times {\boldsymbol{B}}$电子漂移速度, 密度梯度和磁场梯度引起的抗磁性漂移速度${\upsilon _*}$和${\upsilon _{\text{D}}}$, 图中灰色虚线表示推力器出口的位置; (b)密度梯度和磁场梯度与轴向位置的依赖关系

    Figure 1.  (a) The normalized potential $\phi $、plasma density $n$、electric field $ E $, electron temperature ${T_{\text{e}}}$、magnetic field $B$、ion velocity ${\upsilon _{\text{i}}}$, ${\boldsymbol{E}} \times {\boldsymbol{B}}$drift velocity, electron diamagnetic drift velocity due to density gradient and magnetic gradient ${\upsilon _*}$ and ${\upsilon _{\text{D}}}$, respectively, the grey dashed line in the indicates the exit plane; (b) the density and magnetic gradient on axial position.

    图 2  包含碰撞效应时, 不稳定性的频率(a)和增长率(b)与轴向位置的依赖关系

    Figure 2.  Including collision effects, the dependence of the frequency (a) and growth rate (b) of the instability on the axial position.

    图 3  模式频率和增长率在相空间中的变化

    Figure 3.  The variation of mode frequency and growth rate in phase space.

    图 4  ${k_y} = 10$(a)和${k_y} = 300$(b)时, 不同碰撞频率下模式频率和增长率在相空间中的变化

    Figure 4.  The variation of mode frequency and growth rate in the phase space for different collision frequences: (a) ${k_y} = 10$; (b) ${k_y} = 300$.

    图 5  包含密度梯度和碰撞效应时, 不稳定性的实频(a)和增长率(b)与轴向位置的依赖关系

    Figure 5.  Dependence of frequency (a) and growth rate (b) of instability on the axial position, including the gradient of plasma density and electron collision effects.

    图 6  包含密度和磁场梯度以及碰撞效应时, 不稳定性的实频(a)和增长率(b)与轴向位置的依赖关系

    Figure 6.  Dependence of frequency (a) and growth rate (b) of instability on the axial position, including the gradient of plasma density and magnetic field as well as electron collision effects.

    图 7  频率与轴向位置的依赖关系

    Figure 7.  Frequency dependency on axial position.

    表 1  计算中的输入参数

    Table 1.  Input parameters for calculation.

    参数 数值
    ${\varPhi _{\text{m}}}$/V 270
    ${B_{\text{m}}}$/T 0.018
    ${n_{\text{m}}}$/m–3 5.0×1017
    ${\vartheta _1}$ 2.5
    ${\vartheta _2}$ 4
    ${\vartheta _3}$ 7.5
    ${\vartheta _4}$ 8
    ${l_1}$ $0.62 d$
    ${l_2}$ $0.84 d$
    ${l_3}$ $0.92 d$
    ${\alpha _2}$ 1.5
    $T_{\text{e}}^{{\text{max}}}$/eV 24
    $T_{\text{e}}^{{\text{min}}}$/eV 3
    DownLoad: CSV
  • [1]

    Koo J W, Boyd I D 2006 Phys. Plasmas 13 033501Google Scholar

    [2]

    Lazurenko A, Coduti G, Mazouffre S, Bonhomme G 2008 Phys. Plasmas 15 034502Google Scholar

    [3]

    Appleton B R, Moak C D, Noggle T S, Barrett J H 1972 Phys. Rev. Lett. 28 1307Google Scholar

    [4]

    Anders A, Ni P, Rauch A 2012 J. Appl. Phys. 111 053304Google Scholar

    [5]

    Brenning N, Lundin D, Minea T, Costin C, Vitelaru C 2013 J. Phys. D: Appl. Phys. 46 084005Google Scholar

    [6]

    Smolyakov A I, Chapurin O, Frias W, Kosakarov O, Romadanov I, Tang T, Umansky M, Raitses Y, Kaganovich I D, Lakhin V P 2017 Plasma Phys. Control. Fusion 59 014041Google Scholar

    [7]

    Boeuf J P, Takahashi M 2020 Phys. Rev. Lett. 18 124

    [8]

    Boeuf J P, Garrigues L 2018 Phys. Plasmas 25 061204Google Scholar

    [9]

    Morozov K N, Esipchuk Y V, Kapulkin A, Nevrovskii V, Smirnov V A 1972 Sov. Phys. Tech. Phys. 17 482

    [10]

    Esipchuk Y V, Tilinin G N 1976 Sov. Phys. Tech. Phys. 21 417

    [11]

    Gorshkov O A, Tomilin D A, Shagaida A A 2012 Plasma Phys. Rep. 38 271Google Scholar

    [12]

    Tomilin D 2013 Phys. Plasmas 20 042103Google Scholar

    [13]

    Romadanov I, Smolyakov A, Raitses Y, Kaganovich I D, Tang T, Ryzhkov S 2016 Phys. Plasmas 23 122111Google Scholar

    [14]

    Lakhin V P, Ilgisonis V I, Smolyakov A I, Sorokina E A, Marusov N A 2018 Phys. Plasmas 25 012106Google Scholar

    [15]

    Marusov N A, Sorokina E A, Lakhin V P, Ilgisonis A I, Smolyakov A I 2019 Plasma Sources Sci. Technol. 28 015002Google Scholar

    [16]

    Boeuf J P 2017 J. Plasma Phys. 121 011101

    [17]

    Ducrocq A, Adam J C, Héron A, Laval G 2006 Phys. Plasmas 13 102111Google Scholar

    [18]

    Lafleur T, Baalrud S D, Chabert P 2016 Phys. Plasmas 23 053502Google Scholar

    [19]

    Boeuf J P, Garrigues L 2018 Phys. Plasmas 25 061204Google Scholar

    [20]

    Tavant A, Croes V, Lucken R, Lafleur T, Bourdon A, Chabert P 2018 Plasma Sources Sci. Technol. 27 124001Google Scholar

    [21]

    Taccogna F, Minelli P, Asadi Z, Bogopolsky G 2019 Plasma Sources Sci. Technol. 28 064002Google Scholar

    [22]

    Mandal D, Elskens Y, Lemoine N, Doveil F 2020 Phys. Plasmas 27 032301Google Scholar

    [23]

    Chen L, Kan Z C, Gao W F, Duan P, Chen J Y, Tan C Q, Cui Z J 2024 Chin. Phys. B 33 015203Google Scholar

    [24]

    Morozov A I, Esipchuk Y V, Kapulkin A M, Nevrovskii V A, Smirnov V A 1972 Sov. Phys. Tech. Phys. 17 482

    [25]

    Artsimovich L A, Andronov I M, Esipchuk Y V, Bersukov I A, Kozubskii K N 1974 Kosm. Issled. 12 451

    [26]

    Frias W, A I, Smolyakov, Kaganovich I D, Raitses Y 2012 Phys. Plasmas 19 072112Google Scholar

    [27]

    Romadanov I, Smolyakov A, Raitses Y, Kaganovich I, Tian T, Ryzhkov S 2016 Phys. Plasmas 23 122111Google Scholar

    [28]

    Lakhin V P, Ilgisonis V I, Smolyakov A I, Sorokina E A, Marusov N A 2018 Phys. Plasmas 25 012106Google Scholar

    [29]

    Marusov N A, Sorokina E A, Lakhin V P, Ilgisonis A I, Smolyakov A I 2019 Plasma Sources Sci. Technol. 28 015002Google Scholar

    [30]

    Koshkarov O 2018 Ph. D. Dissertation (Saskatoon: Saskatchewan University

    [31]

    Kronhaus I, Kapulkin A, Balabanov V, Rubanovich M, Guelman M, Natan B 2012 J. Phys. D: Appl. Phys. 45 175023

    [32]

    Litvak A A, Fisch N J 2001 Phys. Plasmas 8 648Google Scholar

    [33]

    Boeuf J P, Smolyakov A 2023 Phys. Plasmas 30 050901Google Scholar

    [34]

    Litvak A A, Fisch N J 2000 PPPL Reports posted on the U. S. Department of Energy’s Princeton Plasma Physics Laboratory Publications and Reports web site in Calendar Year 2000 The home page for PPPL Reports and Publications is: http://www.pppl.gov/pub_report/ PPPL-3521

    [35]

    Boeuf J P 2014 Front. Phys. 2 74

    [36]

    Lampe M, Manheimer W M, McBride J B, Orens J H, Shanny R, Sudan R N 1971 Phys. Rev. Lett. 26 1221Google Scholar

    [37]

    Lampe M, Manheimer W M, McBride J B, Orens J H, Papadopoulos K, Shanny R, Sudan R N, 1972 Phys. Fluids 15 662Google Scholar

    [38]

    McBride J B, Ott E, Boris J P, Orens J H 1972 Phys. Fluids 15 2367Google Scholar

    [39]

    Taccogna F, Garrigues 2019 Rev. Mod. Plasma Phys. 3 12Google Scholar

  • [1] Ma Li-Li, Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Jiang Jun, Ding Xiao-Bin, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong. Theoretical investigation of electron-impact ionization of W6+ ion. Acta Physica Sinica, doi: 10.7498/aps.73.20240408
    [2] Yang San-Xiang, Zhao Yi-De, Dai Peng, Li Jian-Peng, Geng Hai, Yang Jun-Tai, Jia Yan-Hui, Guo Ning. Two-dimensional simulation of influence of plume magnetic field on performance of Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.73.20241331
    [3] Yang San-Xiang, Guo Ning, Jia Yan-Hui, Geng Hai, Gao Jun, Liu Jia-Tao, Liu Shi-Yong, Yang Sheng-Lin. Breathing oscillations excitation mechanism and influence factors in Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.72.20230009
    [4] Yang San-Xiang, Wang Qian-Nan, Gao Jun, Jia Yan-Hui, Geng Hai, Guo Ning, Chen Xin-Wei, Yuan Xing-Long, Zhang Peng. Numerical study of the effect of radial magnetic field on performance of Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.71.20212386
    [5] Wang Wen-Zhao, Hu Bi-Tao, Zheng Hao, Tu Xiao-Qing, Gao Peng-Lin, Yan Song, Guo Wen-Chuan, Yan Hai-Yang. A new magnetic field system for 3He polarization. Acta Physica Sinica, doi: 10.7498/aps.67.20180571
    [6] Wang Peng, Xue Yun, Lou Zhi-Mei. Dynamic instability of super-long elastic rod in viscous fluid. Acta Physica Sinica, doi: 10.7498/aps.66.094501
    [7] Tan Wen-Jing, An Zhu, Zhu Jing-Jun, Zhao Jian-Ling, Liu Man-Tian. Bremsstrahlung spectra produced by 10-25 keV electron impact on thick W, Au targets. Acta Physica Sinica, doi: 10.7498/aps.65.113401
    [8] Wang Tong, Wang Xiao-Fang. An analytic approach for density gradient injection in laser wake field acceleration. Acta Physica Sinica, doi: 10.7498/aps.65.044102
    [9] Zhang Heng, Duan Wen-Shan. The modulational instability of the solition wave in two-dimensional Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.62.044703
    [10] Qing Shao-Wei, E Peng, Duan Ping. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.62.055202
    [11] Wei Qi, E Wen-Ji. Thermodynamic analyses of dewetting instability in thin films. Acta Physica Sinica, doi: 10.7498/aps.61.160508
    [12] Qing Shao-Wei, E Peng, Duan Ping. Effect of electron temperature anisotropy on plasma-wall interaction in Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.61.205202
    [13] Qing Shao-Wei, Ding Yong-Jie, Duan Ping, Wang Xiao-Gang, Yu Da-Ren. Effect of electron temperature anisotropy on BN dielectric wall sheath characteristics in Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.60.025204
    [14] Deng Li-Yun, Lan Hong-Mei, Liu Yue. Numerical study on Hall thruster magnetic configuration and its optimization. Acta Physica Sinica, doi: 10.7498/aps.60.025213
    [15] E Peng, Duan Ping, Wei Li-Qiu, Bai De-Yu, Jiang Bin-Hao, Xu Dian-Guo. Experimental study of vacuum backpressure on the discharge characteristics of a Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.59.8676
    [16] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.59.7182
    [17] E Peng, Han Ke, Wu Zhi-Wen, Yu Da-Ren. On the role of magnetic field intensity effects on the discharge characteristics of Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.58.2535
    [18] Wang Guang-Chang, Zheng Zhi-Jian, Gu Yu-Qiu, Chen Tao, Zhang Ting. Study of transport of hot electrons in solid targets using transition radiation. Acta Physica Sinica, doi: 10.7498/aps.56.982
    [19] Wei Xin-Hua, Zhou Guo-Cheng, Cao Jin-Bin, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, doi: 10.7498/aps.54.3228
    [20] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, doi: 10.7498/aps.52.1656
Metrics
  • Abstract views:  235
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2024
  • Accepted Date:  21 November 2024
  • Available Online:  06 December 2024

/

返回文章
返回