-
The free energy contained in electron drift, electron collision, and gradient of plasma density, temperature, magnetic can trigger the different frequency and wavelength instabilities in hall thrusters. The instabilities will destroy the stable discharge of plasma, affect the matching degree between the thruster and the power processing unit, and down the performance of the thruster. Based on this, the instabilities triggered by electron collision and gradient of plasma density and magnetic field in the hall thruster is studied by using dispersion relation derived from the fluid model. The results show that: 1) The instabilities can be excited at any axial position from the near anode region of the thruster to the plume region when the effect of electron inertia、electron collision with neutral atoms and electron drift are included in the model. The transition of the lower-hybrid mode excited by electron collision into the ion sound mode take place with the azimuthal wavenumber ky is increasing. Where k=2π/λ ,λ is the wave length. The real frequency ωr corresponding to the maximum growth rate γmax slightly decreases with collision frequency increasing for ky=10m-1. However, the maximum real frequency and real frequency ωr corresponding to the maximum growth rate γmax will not change with collision frequency varying for ky=300m-1. Independent on the size of ky, the growth rate of mode triggered by electron collision increases with collision frequency increasing. 2) The plasma density gradient effect plays the dominant role in driving instabilities when the electron inertia, electron-neutral collisions and plasma density gradient are simultaneously included in the model. The dynamic behavior of the model does not change with the increasing of ky, but the eigenvalue of the model increases with the ky increasing. Since the sign of anti-drift frequency induced by the plasma density gradient is changed, and the mode eigenvalue have the opposite change trend on both sides of point κN=0. When the sign of ωs and ωr are opposite, the density gradient effect has a stabilization effect on instability excitation (κN>0). When the sign of ωs and ωr are same, the density gradient effect enhances the excitation of instability (κN<0) .3) If the gradient of the plasma density and magnetic field, electron inertia and electron-neutral collisions are included in the dispersion, the mode eigenvalue relies on the size of electron drift frequency, and the diamagnetic drift frequency induced by the gradient of density and magnetic field. When the density gradient and magnetic gradient effect are considered, there is a stable window in the discharge channel. However,if the electron inertia and electron-neutral collisions are also included, the stable window will disappear.
-
Keywords:
- Hall thruster /
- density gradient /
- magnetic gradient /
- electron collision /
- instability
-
[1] Koo J W, Boyd I D 2006 Phys. Plasmas 13 033501
[2] Lazurenko A, Coduti G, Mazouffre S, Bonhomme G 2008 Phys. Plasmas 15 034502
[3] Appleton B R, Moak C D, Noggle T S, Barrett J H 1972 Phys. Rev.Lett. 281307
[4] Anders A, Ni P, Rauch A 2012 J. Appl. Phys.111 053304
[5] Brenning N, Lundin D, Minea T, Costin C, Vitelaru C 2013 J. Phys. D: Appl. Phys. 46 084005
[6] Smolyakov A I, Chapurin O, Frias W, Kosakarov O, Romadanov I, Tang T, Umansky M, Raitses Y, Kaganovich I D, Lakhin V P 2017 Plasma Phys. Control. Fusion 59 014041
[7] Boeuf J P, Takahashi M 2020 Phys. Rev. Lett. 18 124
[8] Boeuf J P, Garrigues L 2018 Phys. Plasmas 25 061204
[9] Morozov K N, Esipchuk Y V, Kapulkin A, Nevrovskii V, Smirnov V A 1972 Sov. Phys. Tech. Phys. 17 482-7
[10] Esipchuk Y V, Tilinin G N 1976 Sov. Phys. Tech. Phys. 21 417-23
[11] Gorshkov O A, Tomilin D A, Shagaida A A 2012 Plasma Phys. Rep. 38 271-7
[12] Tomilin D 2013 Phys. Plasmas 20 042103
[13] Romadanov I, Smolyakov A, Raitses Y, Kaganovich I D, Tang T, Ryzhkov S 2016 Phys. Plasmas 23 122111
[14] Lakhin V P, Ilgisonis V I, Smolyakov A I, Sorokina E A, Marusov N A 2018 Phys. Plasmas 25 012106
[15] Marusov N A, Sorokina E A, Lakhin V P, Ilgisonis A I, Smolyakov A I 2019 Plasma Sources Sci. Technol.28 015002
[16] Boeuf J P 2017 J. Plasma Phys. 121 011101
[17] Ducrocq A, Adam J C, Héron A, Laval G, 2006 Phys. Plasmas 13 102111
[18] Lafleur T, Baalrud S D, Chabert P 2016 Phys. Plasmas 23 053502
[19] Boeuf J P, Garrigues L 2018 Phys. Plasmas 25 061204
[20] Tavant A, Croes V, Lucken R, Lafleur T, Bourdon A, Chabert P 2018 Plasma Sources Sci. Technol. 27 124001
[21] Taccogna F, Minelli P, Asadi Z, Bogopolsky G 2019 Plasma Sources Sci. Technol. 28 064002
[22] Mandal D, Elskens Y, Lemoine N, Doveil F 2020 Phys. Plasmas 27 032301
[23] Chen L, Kan Z C,Gao W F, et al 2024 Chin. Phys. B 33 015203
[24] Morozov A I,Esipchuk Y V, Kapulkin A M, Nevrovskii V A, Smirnov V A 1972 Sov. Phys. Tech. Phys. 17 482
[25] Artsimovich L A,Andronov I M, Esipchuk Y V, Bersukov I A, Kozubskii K N 1974 Kosm. Issled. 12 451
[26] Frias W, A I, Smolyakov, Kaganovich I D, Raitses Y 2012 Phys. Plasmas 19 072112
[27] Romadanov I,Smolyakov A,Raitses Y,Kaganovich I, Tian T, Ryzhkov S 2016 Phys. Plasmas 23 122111
[28] Lakhin V P, Ilgisonis V I, Smolyakov A I, Sorokina E A, Marusov N A 2018 Phys. Plasmas 25 012106
[29] Marusov N A, Sorokina E A, Lakhin V P, Ilgisonis A I, Smolyakov A I 2019 Plasma Sources Sci. Technol. 28 015002
[30] Koshkarov O 2018 P.D. dissertation (Saskatoon: Saskatchewan University)
[31] Kronhaus I, Kapulkin A, Balabanov V, Rubanovich M, Guelman M, Natan B 2012 J. Phys. D: Appl. Phys. 45 175023
[32] Litvak A A, Fisch N J 2001 Phys. Plasmas 8 648-51
[33] Boeuf J P, Smolyakov A 2023 Phys. Plasmas 30 050901
[34] Litvak A A, Fisch N J 2000 PPPL Reports posted on the U.S. Department of Energy’s Princeton Plasma Physics Laboratory Publications and Reports web site in Calendar Year 2000. The home page for PPPL Reports and Publications is: http://www.pppl.gov/pub_report/PPPL-3521
[35] Boeuf J P 2014 Front. Phys. 2 74
[36] Lampe M, Manheimer W M, McBride J B, Orens J H, Shanny R, Sudan R N 1971 Phys. Rev. Lett. 26 1221
[37] Lampe M, Manheimer W M, McBride J B, Orens J H, Papadopoulos K, Shanny R, Sudan R N, 1972 Phys. Fluids 15 662.
[38] McBride J B, Ott E, Boris J P, Orens J H 1972 Phys. Fluids 15 2367–83
[39] Taccogna F, Garrigues 2019 Reviews of Modern Plasma Physics 3:12
Metrics
- Abstract views: 93
- PDF Downloads: 0
- Cited By: 0