Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation study on the mechanism of plasma dissociation of carbon dioxide in atmospheric pressure packed-bed reactors

Peng Yi Wang Chun-Jing Li Jing Gao Kai-Yue Xu Han-Cheng Chen Chuan-Jie Qian Mu-Yang Dong Bing-Yan Wang De-Zhen

Citation:

Numerical simulation study on the mechanism of plasma dissociation of carbon dioxide in atmospheric pressure packed-bed reactors

Peng Yi, Wang Chun-Jing, Li Jing, Gao Kai-Yue, Xu Han-Cheng, Chen Chuan-Jie, Qian Mu-Yang, Dong Bing-Yan, Wang De-Zhen
PDF
HTML
Get Citation
  • The streamer propagation and electric field distribution in a two-dimensional fluid model of a packed bed reactor (PBR) filled with carbon dioxide are comprehensively studied by utilizing the PASSKEy simulation platform in this work. The spatiotemporal evolution of electron density, electric fields and key plasma species in the discharge process are studied in depth. The PBR with layered dielectric spheres is simulated by using the model, indicating that the inner sides of the first layer and the second layer of dielectric spheres are not the main regions for reactions such as CO2 dissociation; instead, the main regions are along the streamer propagation path and the outer side of the first layer of dielectric sphere. In this work, the propagation of streamers in an electric field is investigated, highlighting the influence of anode voltage rise and dielectric polarization on local electric field enhancement. This enhancement leads the electron density and temperature to increase, which facilitats streamer propagation and the formation of filamentary microdischarges and surface ionization waves. This work provides a detailed analysis of the local electric field evolution at specific points within the PBR, and a further investigation of the spatiotemporal dynamics of spatial and surface charges, revealing that negative charges concentrate in the streamer and on the dielectric surface, with density being significantly higher than that of positive charges. The positive charge distribution is closely related to the streamer path, and with time going by, the charge distribution becomes dominated in the discharge space. This work also explores the surface charge deposition on the dielectric spheres, and discusses the evolution trend of the distribution. Additionally, this work discusses the temporal and spatial evolution of key plasma species, including ions and radicals, and their contributions to the overall discharge characteristics. The production mechanisms of carbon monoxide particles, carbon dioxide ions, and oxygen ions are analyzed, with a focus on their spatial distribution and correlation with electron density. Finally, the energy deposition within the PBR is examined by integrating the spatial energy deposition of electrons and major positive ions. The results indicate a total energy deposition value of approximately 1.428 mJ/m, with carbon dioxide ions accounting for 8.8% of this value.
  • 图 1  三项亥姆霍兹方程拟合图

    Figure 1.  Fitted plot of the three terms Helmholtz equation.

    图 2  模型结构图 (a)几何结构; (b)电压波形; (c)网格剖分示意图

    Figure 2.  Model structure: (a) Geometry; (b) voltage; (c) mesh.

    图 3  电子密度的时空演化

    Figure 3.  Time evolution of electron density

    图 4  约化电场的时空演化

    Figure 4.  Time evolution of the reduced electric field.

    图 5  局部电场的时间演化 (a) 6个节点的空间位置, 背景图为5 ns时的约化电场; (b) 6个节点处的约化电场强度随时间的变化

    Figure 5.  Time evolution of the local electric field: (a) The location of the six points, with the reduced electric field at 5 ns in the background image; (b) the variation of the reduced electric field amplitude with time at the six points.

    图 6  空间电荷数密度的时空演化

    Figure 6.  Time evolution of the number density of space charge.

    图 7  介质表面电荷的时空演化 (a), (f) D2; (b) (e) D1; (c) (d) D0

    Figure 7.  Time evolution of the dielectric surface charge (a), (f) D2; (b) (e) D1; (c) (d) D0.

    图 8  二氧化碳离子的时空演化

    Figure 8.  Time evolution of carbon dioxide ions.

    图 10  一氧化碳的时空演化

    Figure 10.  Time evolution of carbon monoxide.

    图 9  氧气分子离子的时空演化

    Figure 9.  Time evolution of oxygen molecular ions.

    图 11  电子温度的时空演化

    Figure 11.  Time evolution of the electron temperature.

    图 12  电子和二氧化碳离子的空间能量沉积

    Figure 12.  Total energy deposition of electrons and carbon dioxide ions.

    表 1  三项亥姆霍兹方程系数Anλn

    Table 1.  Coefficients of the three terms Helmholtz equation An and λn.

    nAn/(cm–2·torr–1)λn /(cm–1·torr–1)
    13.74×10–52.31
    24.35×10–60.837
    31.55×10–47.79
    DownLoad: CSV

    表 2  模型中包含的粒子概述

    Table 2.  Overview of particles included in the model.

    分子 CO2, CO, O2
    离子 ${\mathrm{CO}}_2^+ $, CO+, C+, O+, ${\mathrm{O}}_2^+ $, O, ${\mathrm{O}}_2^- $
    自由基 O, C
    DownLoad: CSV

    表 3  模型中包含的电子碰撞反应

    Table 3.  Electron collision reactions included in the model.

    类型 反应 焓变/eV 反应速率
    电离 e+CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $+e+e –13.80 BOLSIG+
    电离 e+CO2$ \Rightarrow$CO+O++e+e –19.1 BOLSIG+
    电离 e+CO2$ \Rightarrow$O+CO++e+e –19.5 BOLSIG+
    电离 e+CO2$ \Rightarrow$O2+C++e+e –27.8 BOLSIG+
    电离 e+CO$ \Rightarrow$CO++e+e –14.01 BOLSIG+
    电离 e+CO$ \Rightarrow$C++O+e+e –22.0 BOLSIG+
    电离 e+CO$ \Rightarrow$C+O++e+e –25.0 BOLSIG+
    电离 e+O2$ \Rightarrow$${\mathrm{O}}_2^+ $+e+e –12.06 BOLSIG+
    解离 e+O2$ \Rightarrow$e+O+O 0.8 BOLSIG+
    解离 e+CO2$ \Rightarrow$e+CO+O –7.0 BOLSIG+
    吸附 e+O2+O2$ \Rightarrow$${\mathrm{O}}_2^- $+O2 0 6.0×10–39$ T_{\text{e}}^{{{ - 1}}} $b*
    吸附 e+O2+CO2$ \Rightarrow$CO2+${\mathrm{O}}_2^- $ 1.60 3.0×10–42b*
    吸附 e+O+CO2$ \Rightarrow$CO2+O 1.60 1.0×10–43b*
    解离+吸附 e+CO2$ \Rightarrow$CO+O 0 BOLSIG+
    解离+吸附 e+CO$ \Rightarrow$C+O 0 BOLSIG+
    解离+吸附 e+O2$ \Rightarrow$O+O 0 BOLSIG+
    e-i复合 e+${\mathrm{CO}}_2^+ $$ \Rightarrow$CO+O 1.60 2.0×10–11$ T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 1} $a*
    e-i复合 e+${\mathrm{CO}}_2^+ $$ \Rightarrow$C+O 1.60 3.68×10–14$ T_{\text{e}}^{{{ - 0}}{.55}} $a*
    e-i复合 e+${\mathrm{CO}}_2^+ $$ \Rightarrow$C+O2 1.60 3.94×10–13$ T_{\text{e}}^{{{ - 0}}{.4}} $a*
    e-i复合 e+${\mathrm{O}}_2^+ $$ \Rightarrow$O+O 1.60 6.0×10–13$ T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 0.5} $a*
    e-i复合 e+O2++CO2$ \Rightarrow$O2+CO2 1.60 1.0×10–38b*
    e-i复合 e+O++CO2$ \Rightarrow$O+CO2 1.60 1.0×10–38b*
    注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s).
    DownLoad: CSV

    表 4  模型中包含的重粒子反应

    Table 4.  Heavy particle reactions included in the model.

    类型 反应 焓变/eV 反应速率
    电子分离 O+O$ \Rightarrow$O2+e 0 1.4×10–16a*
    电子分离 ${\mathrm{O}}_2^- $+O$ \Rightarrow$O2+O+e 0 1.5×10–16a*
    i-i复合 ${\mathrm{O}}_2^- $+${\mathrm{O}}_2^+ $+O2$ \Rightarrow$O2+O2+O2 7.0 2.0×10–37b*
    电荷转移 O++CO2$ \Rightarrow$${\mathrm{O}}_2^+ $+CO 0 9.4×10–16a*
    电荷转移 O++CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $+O 0 4.5×10–16a*
    电荷转移 CO++CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $+CO 0 1.0×10–15a*
    电荷转移 C++CO$ \Rightarrow$CO++C 0 5.0×10–19a*
    电荷转移 ${\mathrm{O}}_2^+ $+C$ \Rightarrow$CO++O 0 5.2×10–17a*
    电荷转移 ${\mathrm{CO}}_2^+ $+O2$ \Rightarrow$CO2+${\mathrm{O}}_2^+ $ 0 5.3×10–17a*
    电荷转移 ${\mathrm{CO}}_2^+ $+O$ \Rightarrow$CO+${\mathrm{O}}_2^+ $ 0 1.64×10–16a*
    电荷转移 ${\mathrm{CO}}_2^+ $+O$ \Rightarrow$CO2+O+ 0 9.62×10–17a*
    电荷转移 CO++O$ \Rightarrow$CO+O+ 0 1.4×10–16a*
    电荷转移 CO++O2$ \Rightarrow$CO+${\mathrm{O}}_2^+ $ 0 1.2×10–16a*
    中性反应 CO2+CO2$ \Rightarrow$CO+O+CO2 0.60 3.91×10–16e–(49430/Tg) a*
    中性反应 CO2+O$ \Rightarrow$CO+O2 0 2.8×10–17e–(26500/Tg) a*
    中性反应 CO2+C$ \Rightarrow$CO+CO 0 1.0×10–21a*
    中性反应 CO+O+CO2$ \Rightarrow$CO2+CO2 0 8.2×10–46e–(1510/Tg) b*
    中性反应 O2+CO$ \Rightarrow$CO2+O 0 4.2×10–18e–(24000/Tg) a*
    中性反应 O2+C$ \Rightarrow$CO+O 0 3.0×10–17a*
    中性反应 O+C+CO2$ \Rightarrow$CO+CO2 0 9.12×10–34 Tg–3.08 e–(2114/Tg) b*
    中性反应 O+O+CO2$ \Rightarrow$O2+CO2 0 3.81×10–42 Tg–1e–(170/Tg) b*
    注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s).
    DownLoad: CSV
  • [1]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [2]

    George A, Shen B X, Craven M, Wang Y L, Kang D R, Wu C F, Tu X 2021 Renew. Sust. Energ. Rev. 135 109702Google Scholar

    [3]

    Bogaerts A, Neyts E C, Guaitella O, Murphy A B 2022 Plasma Sources Sci. Technol. 31 053002Google Scholar

    [4]

    Sun S R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar

    [5]

    张泰恒, 王绪成, 张远涛 2021 物理学报 70 215201Google Scholar

    Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70 215201Google Scholar

    [6]

    Hinterman E, Hoffman J A 2020 Acta Astronaut. 170 678Google Scholar

    [7]

    McClean J B, Hoffman J A, Hecht M H, Aboobaker A M, Araghi K R, Elangovan S, Graves C R, Hartvigsen J J, Hinterman E D, Liu A M, Meyen F E, Nasr M, Ponce A, Rapp D, SooHoo J G, Swobada J, Voecks G E 2022 Acta Astronaut. 192 301Google Scholar

    [8]

    Wang W Z, Kim H H, Laer K V, Bogaerts A 2018 Chem. Eng. J. 334 2467Google Scholar

    [9]

    Kruszelnicki J, Engeling K W, Foster J E, Xiong Z M, Kushner M J 2017 J. Phys. D: Appl. Phys. 50 025203Google Scholar

    [10]

    Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002Google Scholar

    [11]

    Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process 43 1613Google Scholar

    [12]

    Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004Google Scholar

    [13]

    Cheng H, Ma M Y, Zhang Y Z, Liu D W, Lu X P 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar

    [14]

    Lu N, Liu N, Zhang C K, Su Y, Shang K F, Jiang N, Li J, Wu Y 2021 Chem. Eng. J. 417 129283Google Scholar

    [15]

    Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207Google Scholar

    [16]

    Kaliyappan P, Paulus A, Haen J D, Pieter S, Uytdenhouwen Y, Hafezkhiabani N, Bogaerts A, Meynen V, Elen K, Hardy A, Bael M V 2021 J. CO2 Util. 46 101468Google Scholar

    [17]

    Uytdenhouwen Y, Meynen V, Cool P, Bogaerts A 2020 Catalysts 10 530Google Scholar

    [18]

    Uytdenhouwen Y, Alphen S V, Michielsen I, Meynen V, Cool P, Bogaerts A 2018 Chem. Eng. J. 348 557Google Scholar

    [19]

    Li X R, Dijcks S, Sun A B, Nijdam S, Teunissen J 2024 Plasma Sources Sci. Technol. 33 095009Google Scholar

    [20]

    Marskar R 2024 Plasma Sources Sci. Technol. 33 025023Google Scholar

    [21]

    Zhou C, Yuan C X, Kudryavtsev A, Katircioglu T Y, Rafatov I, Yao J F 2023 Plasma Sources Sci. Technol. 32 015010Google Scholar

    [22]

    付强, 王聪, 王语菲, 常正实 2021 物理学报 71 115204

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204

    [23]

    张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 61 245205Google Scholar

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205Google Scholar

    [24]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [25]

    肖江平, 戴栋, Victor F. Tarasenko, 邵涛 2023 物理学报 72 105201Google Scholar

    Xiao J P, Dai D, Tarasenko V F, Shao T 2023 Acta Phys. Sin. 72 105201Google Scholar

    [26]

    Zhu Y F, Chen X C, Wu Y, Starikovskaia S 2021 PASSKEy code [software]. Available from http://www.plasma-tech.net/parser/passkey/, Science and Technology of Plasma Dynamics Laboratory, Xi’an, China and Laboratoire de Physique des Plasmas, Paris, France

    [27]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar

    [28]

    Pancheshnyi S 2014 Plasma Sources Sci. Technol. 24 015023Google Scholar

    [29]

    Zhu Y F, Wu Y, Li J 2020 arXiv. 2005.10021

    [30]

    Guo Y L, Li Y R, Zhu Y F, Sun A B 2023 Plasma Sources Sci. Technol. 32 025003Google Scholar

    [31]

    Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Technol. 16 656Google Scholar

    [32]

    Teich T H 1967 Z. Phys. 199 378Google Scholar

    [33]

    Przybylski A 1962 Z. Phys. 168 504Google Scholar

    [34]

    Sroka W 1970 Zeitschrift für Naturforschung A 25 1437

    [35]

    Bagheri B, Teunissen J, Ebert U 2020 Plasma Sources Sci. Technol. 29 125021Google Scholar

    [36]

    Levko D, Pachuilo M, Raja L L 2017 J. Phys. D: Appl. Phys. 50 354004Google Scholar

    [37]

    Zhu Y F, Starikovskaia S 2018 Plasma Sources Sci. Technol. 27 124007Google Scholar

    [38]

    Peng B F, Jiang N, Zhu Y F, Wu Y 2024 Plasma Sources Sci. Technol. 33 045018Google Scholar

    [39]

    Itikawa database, www. lxcat. net [2024-05-19]

    [40]

    IST-Lisbon database, www. lxcat. net [2024-05-19]

    [41]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [42]

    Bogaerts A, Wang W Z, Berthelot A, Guerra V 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar

    [43]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar

    [44]

    Chen Y L, Peng Y, Qian M Y, Liu S Q, Zhang J L, Wang D Z 2022 Jpn. J. Appl. Phys. 61 086001Google Scholar

  • [1] Cheng Liang-Yuan, Xu Jin-Liang. Effect of flow direction on heat transfer and flow characteristics of supercritical carbon dioxide. Acta Physica Sinica, doi: 10.7498/aps.73.20231142
    [2] Peng Yi, Wang ChunJing, Li Jing, Gao KaiYue, Xu HanCheng, Chen ChuanJie, Qian MuYang, Dong BinYan, WangDeZhen. Numerical Simulation Study on the Mechanism of Plasma Dissociation of Carbon Dioxide in Atmospheric Pressure Packed-Bed Reactors. Acta Physica Sinica, doi: 10.7498/aps.73.20241241
    [3] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20230693
    [4] Zeng Ping, Song Pan, Wang Xiao-Wei, Zhao Jing, Zhang Dong-Wen, Yuan Jian-Min, Zhao Zeng-Xiu. Dynamics of many-body fragmentation of carbon dioxide dimer tetravalent ions produced by intense femtosecond laser fields. Acta Physica Sinica, doi: 10.7498/aps.72.20230699
    [5] Sun Hui, Liu Jing-Nan, Zhang Li-Xin, Yang Qi-Guo, Gao Ming. Numerical analysis of boundary line between liquid-like zone and gas-like zone of supercritical CO2. Acta Physica Sinica, doi: 10.7498/aps.71.20211464
    [6] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, doi: 10.7498/aps.71.20212353
    [7] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, doi: 10.7498/aps.71.20220171
    [8] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting. Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, doi: 10.7498/aps.70.20202181
    [9] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, doi: 10.7498/aps.70.20202246
    [10] Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen. Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma. Acta Physica Sinica, doi: 10.7498/aps.70.20201700
    [11] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, doi: 10.7498/aps.68.20190440
    [12] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.67.20172192
    [13] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, doi: 10.7498/aps.62.175204
    [14] Cheng Si-Yang, Xu Liang, Gao Min-Guang, Jin Ling, Li Sheng, Feng Shu-Xiang, Liu Jian-Guo, Liu Wen-Qing. Study on remote sensing of carbon dioxide column concentration in the atmosphere by direct-sun infrared absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.62.124206
    [15] Qu Nian-Rui, Gao Fa-Ming. Theoretical study on electronic structure and properties of solid carbon dioxide. Acta Physica Sinica, doi: 10.7498/aps.60.067102
    [16] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, doi: 10.7498/aps.60.125201
    [17] Zhou Xiang, Zhang Xuan, Liu Ai-Fen, Zeng Xiang-Hua. Structure of FC(O)O2 and the mechanism of its reaction with NO. Acta Physica Sinica, doi: 10.7498/aps.59.5128
    [18] Luo Ben-Yi, Lu Yi-Gang. Study of sound speed in near-critical carbon dioxide. Acta Physica Sinica, doi: 10.7498/aps.57.4397
    [19] Zhao Jiang, Cui Lei, Zeng Xiang-Hua, Xu Xiu-Lian. Theoretical study on the reaction mechanism of the reaction of FC(O)O with NO. Acta Physica Sinica, doi: 10.7498/aps.57.7349
    [20] Wang Pei-Yi, Yang Chun, Li Lai-Cai, Li Yan-Rong. Theoretical study on the reaction mechanism of Sr,Ti,O reactions in early growth of SrTiO3 thin films. Acta Physica Sinica, doi: 10.7498/aps.57.2340
Metrics
  • Abstract views:  115
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2024
  • Accepted Date:  24 October 2024
  • Available Online:  11 December 2024

/

返回文章
返回