-
The streamer propagation and electric field distribution in a two-dimensional fluid model of a packed bed reactor (PBR) filled with carbon dioxide are comprehensively studied by utilizing the PASSKEy simulation platform in this work. The spatiotemporal evolution of electron density, electric fields and key plasma species in the discharge process are studied in depth. The PBR with layered dielectric spheres is simulated by using the model, indicating that the inner sides of the first layer and the second layer of dielectric spheres are not the main regions for reactions such as CO2 dissociation; instead, the main regions are along the streamer propagation path and the outer side of the first layer of dielectric sphere. In this work, the propagation of streamers in an electric field is investigated, highlighting the influence of anode voltage rise and dielectric polarization on local electric field enhancement. This enhancement leads the electron density and temperature to increase, which facilitats streamer propagation and the formation of filamentary microdischarges and surface ionization waves. This work provides a detailed analysis of the local electric field evolution at specific points within the PBR, and a further investigation of the spatiotemporal dynamics of spatial and surface charges, revealing that negative charges concentrate in the streamer and on the dielectric surface, with density being significantly higher than that of positive charges. The positive charge distribution is closely related to the streamer path, and with time going by, the charge distribution becomes dominated in the discharge space. This work also explores the surface charge deposition on the dielectric spheres, and discusses the evolution trend of the distribution. Additionally, this work discusses the temporal and spatial evolution of key plasma species, including ions and radicals, and their contributions to the overall discharge characteristics. The production mechanisms of carbon monoxide particles, carbon dioxide ions, and oxygen ions are analyzed, with a focus on their spatial distribution and correlation with electron density. Finally, the energy deposition within the PBR is examined by integrating the spatial energy deposition of electrons and major positive ions. The results indicate a total energy deposition value of approximately 1.428 mJ/m, with carbon dioxide ions accounting for 8.8% of this value.
-
Keywords:
- packed-bed dielectric barrier discharge /
- dissociation of carbon dioxide /
- numerical simulation of plasma /
- reaction mechanism.
-
图 5 局部电场的时间演化 (a) 6个节点的空间位置, 背景图为5 ns时的约化电场; (b) 6个节点处的约化电场强度随时间的变化
Figure 5. Time evolution of the local electric field: (a) The location of the six points, with the reduced electric field at 5 ns in the background image; (b) the variation of the reduced electric field amplitude with time at the six points.
表 1 三项亥姆霍兹方程系数An与λn
Table 1. Coefficients of the three terms Helmholtz equation An and λn.
n An/(cm–2·torr–1) λn /(cm–1·torr–1) 1 3.74×10–5 2.31 2 4.35×10–6 0.837 3 1.55×10–4 7.79 表 2 模型中包含的粒子概述
Table 2. Overview of particles included in the model.
分子 CO2, CO, O2 离子 ${\mathrm{CO}}_2^+ $, CO+, C+, O+, ${\mathrm{O}}_2^+ $, O–, ${\mathrm{O}}_2^- $ 自由基 O, C 表 3 模型中包含的电子碰撞反应
Table 3. Electron collision reactions included in the model.
类型 反应 焓变/eV 反应速率 电离 e+CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $+e+e –13.80 BOLSIG+ 电离 e+CO2$ \Rightarrow$CO+O++e+e –19.1 BOLSIG+ 电离 e+CO2$ \Rightarrow$O+CO++e+e –19.5 BOLSIG+ 电离 e+CO2$ \Rightarrow$O2+C++e+e –27.8 BOLSIG+ 电离 e+CO$ \Rightarrow$CO++e+e –14.01 BOLSIG+ 电离 e+CO$ \Rightarrow$C++O+e+e –22.0 BOLSIG+ 电离 e+CO$ \Rightarrow$C+O++e+e –25.0 BOLSIG+ 电离 e+O2$ \Rightarrow$${\mathrm{O}}_2^+ $+e+e –12.06 BOLSIG+ 解离 e+O2$ \Rightarrow$e+O+O 0.8 BOLSIG+ 解离 e+CO2$ \Rightarrow$e+CO+O –7.0 BOLSIG+ 吸附 e+O2+O2$ \Rightarrow$${\mathrm{O}}_2^- $+O2 0 6.0×10–39$ T_{\text{e}}^{{{ - 1}}} $b* 吸附 e+O2+CO2$ \Rightarrow$CO2+${\mathrm{O}}_2^- $ 1.60 3.0×10–42b* 吸附 e+O+CO2$ \Rightarrow$CO2+O– 1.60 1.0×10–43b* 解离+吸附 e+CO2$ \Rightarrow$CO+O– 0 BOLSIG+ 解离+吸附 e+CO$ \Rightarrow$C+O– 0 BOLSIG+ 解离+吸附 e+O2$ \Rightarrow$O–+O 0 BOLSIG+ e-i复合 e+${\mathrm{CO}}_2^+ $$ \Rightarrow$CO+O 1.60 2.0×10–11$ T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 1} $a* e-i复合 e+${\mathrm{CO}}_2^+ $$ \Rightarrow$C+O 1.60 3.68×10–14$ T_{\text{e}}^{{{ - 0}}{.55}} $a* e-i复合 e+${\mathrm{CO}}_2^+ $$ \Rightarrow$C+O2 1.60 3.94×10–13$ T_{\text{e}}^{{{ - 0}}{.4}} $a* e-i复合 e+${\mathrm{O}}_2^+ $$ \Rightarrow$O+O 1.60 6.0×10–13$ T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 0.5} $a* e-i复合 e+O2++CO2$ \Rightarrow$O2+CO2 1.60 1.0×10–38b* e-i复合 e+O++CO2$ \Rightarrow$O+CO2 1.60 1.0×10–38b* 注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s). 表 4 模型中包含的重粒子反应
Table 4. Heavy particle reactions included in the model.
类型 反应 焓变/eV 反应速率 电子分离 O–+O$ \Rightarrow$O2+e 0 1.4×10–16a* 电子分离 ${\mathrm{O}}_2^- $+O$ \Rightarrow$O2+O+e 0 1.5×10–16a* i-i复合 ${\mathrm{O}}_2^- $+${\mathrm{O}}_2^+ $+O2$ \Rightarrow$O2+O2+O2 7.0 2.0×10–37b* 电荷转移 O++CO2$ \Rightarrow$${\mathrm{O}}_2^+ $+CO 0 9.4×10–16a* 电荷转移 O++CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $+O 0 4.5×10–16a* 电荷转移 CO++CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $+CO 0 1.0×10–15a* 电荷转移 C++CO$ \Rightarrow$CO++C 0 5.0×10–19a* 电荷转移 ${\mathrm{O}}_2^+ $+C$ \Rightarrow$CO++O 0 5.2×10–17a* 电荷转移 ${\mathrm{CO}}_2^+ $+O2$ \Rightarrow$CO2+${\mathrm{O}}_2^+ $ 0 5.3×10–17a* 电荷转移 ${\mathrm{CO}}_2^+ $+O$ \Rightarrow$CO+${\mathrm{O}}_2^+ $ 0 1.64×10–16a* 电荷转移 ${\mathrm{CO}}_2^+ $+O$ \Rightarrow$CO2+O+ 0 9.62×10–17a* 电荷转移 CO++O$ \Rightarrow$CO+O+ 0 1.4×10–16a* 电荷转移 CO++O2$ \Rightarrow$CO+${\mathrm{O}}_2^+ $ 0 1.2×10–16a* 中性反应 CO2+CO2$ \Rightarrow$CO+O+CO2 0.60 3.91×10–16e–(49430/Tg) a* 中性反应 CO2+O$ \Rightarrow$CO+O2 0 2.8×10–17e–(26500/Tg) a* 中性反应 CO2+C$ \Rightarrow$CO+CO 0 1.0×10–21a* 中性反应 CO+O+CO2$ \Rightarrow$CO2+CO2 0 8.2×10–46e–(1510/Tg) b* 中性反应 O2+CO$ \Rightarrow$CO2+O 0 4.2×10–18e–(24000/Tg) a* 中性反应 O2+C$ \Rightarrow$CO+O 0 3.0×10–17a* 中性反应 O+C+CO2$ \Rightarrow$CO+CO2 0 9.12×10–34 Tg–3.08 e–(2114/Tg) b* 中性反应 O+O+CO2$ \Rightarrow$O2+CO2 0 3.81×10–42 Tg–1e–(170/Tg) b* 注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s). -
[1] Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar
[2] George A, Shen B X, Craven M, Wang Y L, Kang D R, Wu C F, Tu X 2021 Renew. Sust. Energ. Rev. 135 109702Google Scholar
[3] Bogaerts A, Neyts E C, Guaitella O, Murphy A B 2022 Plasma Sources Sci. Technol. 31 053002Google Scholar
[4] Sun S R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar
[5] 张泰恒, 王绪成, 张远涛 2021 物理学报 70 215201Google Scholar
Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70 215201Google Scholar
[6] Hinterman E, Hoffman J A 2020 Acta Astronaut. 170 678Google Scholar
[7] McClean J B, Hoffman J A, Hecht M H, Aboobaker A M, Araghi K R, Elangovan S, Graves C R, Hartvigsen J J, Hinterman E D, Liu A M, Meyen F E, Nasr M, Ponce A, Rapp D, SooHoo J G, Swobada J, Voecks G E 2022 Acta Astronaut. 192 301Google Scholar
[8] Wang W Z, Kim H H, Laer K V, Bogaerts A 2018 Chem. Eng. J. 334 2467Google Scholar
[9] Kruszelnicki J, Engeling K W, Foster J E, Xiong Z M, Kushner M J 2017 J. Phys. D: Appl. Phys. 50 025203Google Scholar
[10] Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002Google Scholar
[11] Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process 43 1613Google Scholar
[12] Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004Google Scholar
[13] Cheng H, Ma M Y, Zhang Y Z, Liu D W, Lu X P 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar
[14] Lu N, Liu N, Zhang C K, Su Y, Shang K F, Jiang N, Li J, Wu Y 2021 Chem. Eng. J. 417 129283Google Scholar
[15] Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207Google Scholar
[16] Kaliyappan P, Paulus A, Haen J D, Pieter S, Uytdenhouwen Y, Hafezkhiabani N, Bogaerts A, Meynen V, Elen K, Hardy A, Bael M V 2021 J. CO2 Util. 46 101468Google Scholar
[17] Uytdenhouwen Y, Meynen V, Cool P, Bogaerts A 2020 Catalysts 10 530Google Scholar
[18] Uytdenhouwen Y, Alphen S V, Michielsen I, Meynen V, Cool P, Bogaerts A 2018 Chem. Eng. J. 348 557Google Scholar
[19] Li X R, Dijcks S, Sun A B, Nijdam S, Teunissen J 2024 Plasma Sources Sci. Technol. 33 095009Google Scholar
[20] Marskar R 2024 Plasma Sources Sci. Technol. 33 025023Google Scholar
[21] Zhou C, Yuan C X, Kudryavtsev A, Katircioglu T Y, Rafatov I, Yao J F 2023 Plasma Sources Sci. Technol. 32 015010Google Scholar
[22] 付强, 王聪, 王语菲, 常正实 2021 物理学报 71 115204
Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204
[23] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 61 245205Google Scholar
Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205Google Scholar
[24] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar
Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar
[25] 肖江平, 戴栋, Victor F. Tarasenko, 邵涛 2023 物理学报 72 105201Google Scholar
Xiao J P, Dai D, Tarasenko V F, Shao T 2023 Acta Phys. Sin. 72 105201Google Scholar
[26] Zhu Y F, Chen X C, Wu Y, Starikovskaia S 2021 PASSKEy code [software]. Available from http://www.plasma-tech.net/parser/passkey/, Science and Technology of Plasma Dynamics Laboratory, Xi’an, China and Laboratoire de Physique des Plasmas, Paris, France
[27] Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar
[28] Pancheshnyi S 2014 Plasma Sources Sci. Technol. 24 015023Google Scholar
[29] Zhu Y F, Wu Y, Li J 2020 arXiv. 2005.10021
[30] Guo Y L, Li Y R, Zhu Y F, Sun A B 2023 Plasma Sources Sci. Technol. 32 025003Google Scholar
[31] Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Technol. 16 656Google Scholar
[32] Teich T H 1967 Z. Phys. 199 378Google Scholar
[33] Przybylski A 1962 Z. Phys. 168 504Google Scholar
[34] Sroka W 1970 Zeitschrift für Naturforschung A 25 1437
[35] Bagheri B, Teunissen J, Ebert U 2020 Plasma Sources Sci. Technol. 29 125021Google Scholar
[36] Levko D, Pachuilo M, Raja L L 2017 J. Phys. D: Appl. Phys. 50 354004Google Scholar
[37] Zhu Y F, Starikovskaia S 2018 Plasma Sources Sci. Technol. 27 124007Google Scholar
[38] Peng B F, Jiang N, Zhu Y F, Wu Y 2024 Plasma Sources Sci. Technol. 33 045018Google Scholar
[39] Itikawa database, www. lxcat. net [2024-05-19]
[40] IST-Lisbon database, www. lxcat. net [2024-05-19]
[41] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar
[42] Bogaerts A, Wang W Z, Berthelot A, Guerra V 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar
[43] Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar
[44] Chen Y L, Peng Y, Qian M Y, Liu S Q, Zhang J L, Wang D Z 2022 Jpn. J. Appl. Phys. 61 086001Google Scholar
Metrics
- Abstract views: 299
- PDF Downloads: 17
- Cited By: 0