搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动方向对超临界二氧化碳流动传热特性的影响

程亮元 徐进良

引用本文:
Citation:

流动方向对超临界二氧化碳流动传热特性的影响

程亮元, 徐进良

Effect of flow direction on heat transfer and flow characteristics of supercritical carbon dioxide

Cheng Liang-Yuan, Xu Jin-Liang
PDF
HTML
导出引用
  • 本文基于拟沸腾理论研究了超临界二氧化碳(sCO2)在水平和垂直向上管中的流动和传热特性差异. 比较了不同质量流量、热流密度和压力下水平管与垂直向上管的流动和换热特性差异. 与以往超临界流体的经典单相流体假设不同, 本文引入拟沸腾理论来处理sCO2在两管中的流动和传热, 将超临界流体视为多相结构, 包括近壁区的类气层和管芯中的类液流体. 结果发现, 传热方面, 在正常传热模式下垂直向上管内壁温和水平管底母线内壁温基本一致. 当垂直向上管发生传热恶化时, 垂直向上管的壁温峰值会随着超临界沸腾数(SBO)的增大超过对应焓值位置的水平管顶母线内壁温. 垂直向上管中SBO区分了正常传热和传热恶化. 而在水平管中, 当弗劳得数小于100时, SBO主导顶底壁面最大壁温差. 相比于垂直向上管, 相同压力下的超临界流体在水平管内发生传热恶化需要更高的热流密度和质量流量的比值. 流动方面, 引起垂直向上管压降斜率增高的机理是孔口收缩效应. 主导水平管压降变化的机理是分层效应, 并用弗劳得数在水平管中顶底壁温差异与压降之间建立联系.
    This work is devoted to investigating the difference in flow and heat transfer characteristics between vertical upward flow and horizontal flow of supercritical carbon dioxide ($\rm sCO_2$) based on the pseudo-boiling theory and the experimental parameters: mass flux G = 496–1100 kg/m2s, heat flux qw = 54.4–300.2 kW/m2, and pressure P = 7.531–20.513 MPa. The differences in flow and heat transfer characteristics between horizontal upward tube and vertical upward tube are compared at different mass fluxes, heat fluxes and pressures fully. Finally, unlike the classical treatment of flow and heat transfer for supercritical fluid, single-phase fluid assumption is abandoned, instead, the pseudo-boiling theory is introduced to deal with the flow transfer and heat transfer of $\rm sCO_2 $ in the two tubes. Supercritical fluid is regarded as a multiphase structure in this work, including a vapor-like layer near the wall and a liquid-like fluid in tube core. The results are indicated below. 1) In terms of heat transfer, the inner-wall temperature of the vertical upward tube and the bottom generatrix of horizontal tube are basically the same under normal heat transfer mode. When the heat transfer deterioration occurs in the vertical upward tube, larger supercritical boiling number (SBO) will cause the wall temperature peak of the vertical upward tube to be much higher than the wall temperature at top generatrix of the horizontal tube at the corresponding enthalpy. The SBO (SBO = 5.126×10–4) distinguishes between normal heat transfer deterioration and heat transfer deterioration in the vertical upward tube. In the horizontal tubes, SBO dominates the maximum wall temperature difference between the top generatrix and the bottom generatrix. Comparing with vertical upward tubes, higher qw/G is required for the heat transfer deterioration of supercritical fluid in the horizontal tubes under the same pressure. 2) In terms of flow, the increase in slope of pressure drop in the vertical upward tube is due to the orifice contraction effect. The mechanism that dominates the variation of pressure drop in the horizontal tube is the flow stratification effect, and we show that Froude number Frave can be the similarity criterion number to connect the temperature difference between the top and bottom generatrix of horizontal tube and the pressure drop. The analysis suggests that mechanisms governing horizontal flow and vertical flow of $\rm sCO_2 $ are different in heat transfer deterioration mode. For the vertical flow, the SBO plays a leading role, while for the horizontal flow, the Fr plays an indispensable role.
      通信作者: 徐进良, xjl@ncepu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 52130608)和国家自然科学基金创新研究群体科学基金(批准号: 51821004)资助的课题.
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 52130608) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51821004).
    [1]

    Duffey R, Pioro I, Zhou X, Zirn U, Kuran S, Khartabil H, Naidin M 2008 Proceedings of the 16th International Conference on Nuclear Engineering Orlando, FL, USA, May 11–15, 2008 p9

    [2]

    Cheng X, Schulenberg T 2001 Karlsruhe Research Centre of Technology and Environment (Karlsruhe, Germany) p12

    [3]

    Martinez A, Duchateau J L, Mardion G B, Gauthier A, Rousset B 1994 Cryogenics 34 591

    [4]

    Dadashev M, Stepanov G 2000 Chem. Technol. Fuels Oils 36 8Google Scholar

    [5]

    Yamada T, Haraguchi N, Hihara E, Wang J 2005 Therm. Sci. Eng. 13 93

    [6]

    Fu Y C, Huang H R, Wen J, Xu G Q, Zhao W 2017 Int. J. Heat Mass Transfer 112 814Google Scholar

    [7]

    Zhang Q, Li H X, Kong X F, Liu J L, Lei X L 2018 Int. J. Heat Mass Transfer 122 469Google Scholar

    [8]

    Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078Google Scholar

    [9]

    Zhang C, Hao B, Cheng L, Xu J, Wang Q 2023 Heat Transfer Eng. 1

    [10]

    Pu H, Li N, Dong M, Shang Y, Du H, Hou C, Zhang J 2023 Int. J. Therm. Sci. 184 107992Google Scholar

    [11]

    Xu Y, Yi Z M 2023 Energy 262 125474Google Scholar

    [12]

    Yu S, Li H, Lei X, Feng Y, Zhang Y, He H, Wang T 2013 Exp. Therm Fluid Sci. 50 213Google Scholar

    [13]

    Huang D, Wu Z, Sunden B, Li W 2016 Appl. Energy 162 494Google Scholar

    [14]

    Yamagata K, Nishikawa K, Hasegawa S, Fujii T, Yoshida S 1972 Int. J. Heat Mass Transfer. 15 2575Google Scholar

    [15]

    Lei Y C, Xu B, Chen Z Q 2021 Int. J. Heat Mass Transfer. 181 121792Google Scholar

    [16]

    Lei X L, Li H X, Zhang W Q, Dinh N T, Guo Y M, Yu S Q 2017 Appl. Therm. Eng. 113 609Google Scholar

    [17]

    Hall W B, Jackson J D 1978 Adv. in Heat Transfer. 7 1

    [18]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 物理学报 69 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 69 064401Google Scholar

    [19]

    Brassington D, Cairns D 1977 Int. J. Heat Mass Transfer 20 207Google Scholar

    [20]

    Simeoni G, Bryk T, Gorelli F, Krisch M, Ruocco G, Santoro M, Scopigno T 2010 Nat. Phys. 6 503Google Scholar

    [21]

    Xu J L, Wang Y, Ma X J 2021 Phys. Rev. E 104 014142Google Scholar

    [22]

    何孝天, 徐进良, 程怡玮 2023 物理学报 72 057801Google Scholar

    He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801Google Scholar

    [23]

    Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Transfer 181 121875Google Scholar

    [24]

    Zhu B J, Xu J L, Wu X M, Xie J, Li M J 2019 Int. J. Therm. Sci. 136 254Google Scholar

    [25]

    Kim T H, Kwon J G, Kim M H, Park H S 2018 Exp. Therm Fluid Sci. 92 222Google Scholar

    [26]

    Xu J, Chen T K 1998 Heat Transfer Eng. 19 45Google Scholar

    [27]

    Yin F, Chen T K, Li H X 2006 Heat Transfer Eng. 27 44

    [28]

    Jiang P X, Zhang Y, Shi R F 2008 Int. J. Heat Mass Transfer 51 3052Google Scholar

    [29]

    Chu X, Laurien E 2016 J. Supercrit. Fluids 116 172Google Scholar

    [30]

    闫晨帅, 徐进良 2020 物理学报 69 044401Google Scholar

    Yan C S, Xu J L 2020 Acta Phys. Sin. 69 044401Google Scholar

    [31]

    Tian R, Xu Y T, Shi L, Song P P, Wei M S 2020 Energy 205 118061Google Scholar

    [32]

    Xing F, Xu J L, Xie J, Liu H, Wang Z X, Ma X L 2015 Int. J. Multiphase Flow 71 98Google Scholar

    [33]

    Kandlikar S 1990 J. Heat Transfer 112 219Google Scholar

    [34]

    Lu C, Kong R, Qiao S, Larimer J, Kim S, Bajorek S, Tien K, Hoxie C 2018 Nucl. Eng. Des. 332 147Google Scholar

    [35]

    程亮元, 王清洋, 王庆华, 徐进良 2023 中国电机工程学报 43 6718

    Cheng L Y, Wang Q Y, Wang Q H, Xu J L 2023 Proceed. CSEE 43 6718

    [36]

    Fan Y H, Tang G H, Sheng Q, Li X L, Yang D L 2023 Energy 262 125470Google Scholar

    [37]

    Solov'Ev A V, Preobrazhenskii E I, Semenov P A 1967 Int. Chem. Engng 7 59

    [38]

    Kumar A, Hardik B 2022 Appl. Therm. Eng. 201 117822Google Scholar

    [39]

    Saisorn S, Wongpromma P, Wongwises S 2018 Int. J. Multiphase Flow 101 97Google Scholar

  • 图 1  实验段及测点布置 (a) 水平管; (b) 垂直向上管

    Fig. 1.  Test tubes and the measuring point disposition: (a) Horizontal tube; (b) vertical upward tube.

    图 2  水平管和垂直向上管内流动内壁温分布 (a) qw/G = 0.18 kJ/kg; (b) qw/G = 0.34 kJ/kg

    Fig. 2.  Inner-wall temperature in horizontal and vertical upward flow: (a) qw/G = 0.18 kJ/kg; (b) qw/G = 0.34 kJ/kg.

    图 3  不同热流密度下水平管和垂直向上管换热和流动特性比较 (a)内壁温分布; (b)阻力压降

    Fig. 3.  Comparison of the heat transfer and flow characteristics in horizontal and vertical upward tubes at different heat fluxes: (a) Inner-wall temperature distribution; (b) friction pressure drop.

    图 4  不同质量流量下水平管和垂直向上管换热和流动特性比较 (a)内壁温分布; (b)阻力压降

    Fig. 4.  Comparison of the heat transfer and flow characteristics in horizontal and vertical upward tubes at different mass fluxes: (a) Inner-wall temperature distribution; (b) friction pressure drop.

    图 5  不同压力下水平管和垂直向上管换热和流动特性比较 (a) 内壁温分布; (b) 阻力压降

    Fig. 5.  Comparison of the heat transfer and flow characteristics in horizontal and vertical upward tubes at different pressures: (a) Inner-wall temperature distribution; (b) friction pressure drop.

    图 6  水平管和垂直向上管摩擦因子比较 (a) 垂直向上管摩擦因子取决于SBO; (b)水平管摩擦因子取决于Frave

    Fig. 6.  Comparison of friction pressure drop in horizontal and vertical upward tubes: (a) f of vertical upward tube depending on SBO; (b) f of horizontal tube depending on Frave.

    图 7  SBOFrave对水平管最大上下壁温差的影响 (a) 三维图; (b) 等温线图

    Fig. 7.  Effect of SBO and Frave on the maximum temperature difference between top generatrix and bottom generatrix: (a) Three-dimensional figure; (b) isotherm figure.

    图 8  水平管和垂直向上管流动传热机理图 (a) 水平管; (b) 正常传热模式的垂直向上管; (c) 传热恶化模式的垂直向上管

    Fig. 8.  Schematics showing the mechanisms for heat transfer and flow characteristics in horizontal and vertical upward tubes: (a) Horizontal tube; (b) vertical upward tube in normal heat transfer mode; (c) vertical upward tube in heat transfer deterioration mode.

  • [1]

    Duffey R, Pioro I, Zhou X, Zirn U, Kuran S, Khartabil H, Naidin M 2008 Proceedings of the 16th International Conference on Nuclear Engineering Orlando, FL, USA, May 11–15, 2008 p9

    [2]

    Cheng X, Schulenberg T 2001 Karlsruhe Research Centre of Technology and Environment (Karlsruhe, Germany) p12

    [3]

    Martinez A, Duchateau J L, Mardion G B, Gauthier A, Rousset B 1994 Cryogenics 34 591

    [4]

    Dadashev M, Stepanov G 2000 Chem. Technol. Fuels Oils 36 8Google Scholar

    [5]

    Yamada T, Haraguchi N, Hihara E, Wang J 2005 Therm. Sci. Eng. 13 93

    [6]

    Fu Y C, Huang H R, Wen J, Xu G Q, Zhao W 2017 Int. J. Heat Mass Transfer 112 814Google Scholar

    [7]

    Zhang Q, Li H X, Kong X F, Liu J L, Lei X L 2018 Int. J. Heat Mass Transfer 122 469Google Scholar

    [8]

    Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078Google Scholar

    [9]

    Zhang C, Hao B, Cheng L, Xu J, Wang Q 2023 Heat Transfer Eng. 1

    [10]

    Pu H, Li N, Dong M, Shang Y, Du H, Hou C, Zhang J 2023 Int. J. Therm. Sci. 184 107992Google Scholar

    [11]

    Xu Y, Yi Z M 2023 Energy 262 125474Google Scholar

    [12]

    Yu S, Li H, Lei X, Feng Y, Zhang Y, He H, Wang T 2013 Exp. Therm Fluid Sci. 50 213Google Scholar

    [13]

    Huang D, Wu Z, Sunden B, Li W 2016 Appl. Energy 162 494Google Scholar

    [14]

    Yamagata K, Nishikawa K, Hasegawa S, Fujii T, Yoshida S 1972 Int. J. Heat Mass Transfer. 15 2575Google Scholar

    [15]

    Lei Y C, Xu B, Chen Z Q 2021 Int. J. Heat Mass Transfer. 181 121792Google Scholar

    [16]

    Lei X L, Li H X, Zhang W Q, Dinh N T, Guo Y M, Yu S Q 2017 Appl. Therm. Eng. 113 609Google Scholar

    [17]

    Hall W B, Jackson J D 1978 Adv. in Heat Transfer. 7 1

    [18]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 物理学报 69 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 69 064401Google Scholar

    [19]

    Brassington D, Cairns D 1977 Int. J. Heat Mass Transfer 20 207Google Scholar

    [20]

    Simeoni G, Bryk T, Gorelli F, Krisch M, Ruocco G, Santoro M, Scopigno T 2010 Nat. Phys. 6 503Google Scholar

    [21]

    Xu J L, Wang Y, Ma X J 2021 Phys. Rev. E 104 014142Google Scholar

    [22]

    何孝天, 徐进良, 程怡玮 2023 物理学报 72 057801Google Scholar

    He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801Google Scholar

    [23]

    Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Transfer 181 121875Google Scholar

    [24]

    Zhu B J, Xu J L, Wu X M, Xie J, Li M J 2019 Int. J. Therm. Sci. 136 254Google Scholar

    [25]

    Kim T H, Kwon J G, Kim M H, Park H S 2018 Exp. Therm Fluid Sci. 92 222Google Scholar

    [26]

    Xu J, Chen T K 1998 Heat Transfer Eng. 19 45Google Scholar

    [27]

    Yin F, Chen T K, Li H X 2006 Heat Transfer Eng. 27 44

    [28]

    Jiang P X, Zhang Y, Shi R F 2008 Int. J. Heat Mass Transfer 51 3052Google Scholar

    [29]

    Chu X, Laurien E 2016 J. Supercrit. Fluids 116 172Google Scholar

    [30]

    闫晨帅, 徐进良 2020 物理学报 69 044401Google Scholar

    Yan C S, Xu J L 2020 Acta Phys. Sin. 69 044401Google Scholar

    [31]

    Tian R, Xu Y T, Shi L, Song P P, Wei M S 2020 Energy 205 118061Google Scholar

    [32]

    Xing F, Xu J L, Xie J, Liu H, Wang Z X, Ma X L 2015 Int. J. Multiphase Flow 71 98Google Scholar

    [33]

    Kandlikar S 1990 J. Heat Transfer 112 219Google Scholar

    [34]

    Lu C, Kong R, Qiao S, Larimer J, Kim S, Bajorek S, Tien K, Hoxie C 2018 Nucl. Eng. Des. 332 147Google Scholar

    [35]

    程亮元, 王清洋, 王庆华, 徐进良 2023 中国电机工程学报 43 6718

    Cheng L Y, Wang Q Y, Wang Q H, Xu J L 2023 Proceed. CSEE 43 6718

    [36]

    Fan Y H, Tang G H, Sheng Q, Li X L, Yang D L 2023 Energy 262 125470Google Scholar

    [37]

    Solov'Ev A V, Preobrazhenskii E I, Semenov P A 1967 Int. Chem. Engng 7 59

    [38]

    Kumar A, Hardik B 2022 Appl. Therm. Eng. 201 117822Google Scholar

    [39]

    Saisorn S, Wongpromma P, Wongwises S 2018 Int. J. Multiphase Flow 101 97Google Scholar

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [3] 张海松, 卢茂聪, 李志刚. 基于膨胀效应的超临界CO2类沸腾临界点模型. 物理学报, 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [4] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓. 不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟. 物理学报, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [5] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式. 物理学报, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [6] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析. 物理学报, 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [7] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究. 物理学报, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [8] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211464
    [9] 张海松, 徐进良, 朱鑫杰. 基于拟沸腾理论的超临界CO2管内传热恶化量纲分析. 物理学报, 2021, 70(4): 044401. doi: 10.7498/aps.70.20201546
    [10] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析. 物理学报, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [11] 张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢. 浮升力和流动加速对超临界CO2管内流动传热影响. 物理学报, 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [12] 王胜, 徐进良, 张龙艳. 非对称纳米通道内流体流动与传热的分子动力学. 物理学报, 2017, 66(20): 204704. doi: 10.7498/aps.66.204704
    [13] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [14] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [15] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [16] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究. 物理学报, 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [17] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [18] 付东, 王学敏, 刘建岷. 超临界二氧化碳和模型共聚物的相平衡和成核性质研究. 物理学报, 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [19] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性. 物理学报, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [20] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
计量
  • 文章访问数:  2368
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-16
  • 修回日期:  2023-11-21
  • 上网日期:  2023-11-30
  • 刊出日期:  2024-01-20

/

返回文章
返回