Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma

Zhong Wang-Shen Chen Ye-Li Qian Mu-Yang Liu San-Qiu Zhang Jia-Liang Wang De-Zhen

Citation:

Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma

Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen
PDF
HTML
Get Citation
  • Recently, atmospheric non-equilibrium plasma has been proposed as a potential and novel type of “reaction carrier” for the activation and conversion of greenhouse gases (methane and carbon dioxide) into value-added chemicals, due to its unique non-equilibrium characteristics. In this paper, a zero-dimensional plasma chemical reaction kinetic model in CH4/CO2 gas mixture is constructed, with an emphasis on reaction mechanism for plasma dry reforming of methane to syngas and oxygenates. Especially, the effect of the CH4 molar fraction (5%–95%) on plasma dry reforming of methane is investigated. First, the time evolution of electron temperature and density with initial methane content is presented, and the results show that both the electron temperature and electron density vary periodically with the applied triangular power density pulse, and the higher initial methane content in gas mixture is favored for a larger electron temperature and density. Subsequently, the time evolution of number densities of free radicals, ions and molecules at different CH4/CO2 molar fraction are given. The higher the initial methane content, the greater the number densities of H, H, H2, and CH3, leading to insufficient oxygen atoms to participate in the reaction for oxygenates synthesis. The conversions of inlet gases, the selectivities of syngas and important oxygenates are also calculated. The conversion rate of carbon dioxide increases with the increasing methane content, but the conversion rate of methane is insensitive to the variation of methane content. As methane mole fraction is increased from 5% to 95%, the selectivities of important oxygenates (CH3OH and CH2O) are relatively low (<5%), and the selectivity of H2 gradually increases from 13.0% to 24.6%, while the selectivity of CO significantly decreases from 58.9% to 9.7%. Moreover, the dominant reaction pathways governing production and destruction of H2, CO, CH2O and CH3OH are determined, and CH3 and OH radicals are found to be the key intermediate for the production of valuable oxygenates. Finally, a schematic overview of the transformation relationship between dominant plasma species is summarized and shown to clearly reveal intrinsic reaction mechanism of dry reforming of methane in atmospheric non-equilibrium plasma.
      Corresponding author: Qian Mu-Yang, qianmuyang@ncu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 12065019, 11705080)
    [1]

    Gangadharan P, Kanchi K C, Lou H H 2012 Chem. Eng. Res. Des. 90 1956Google Scholar

    [2]

    Asinger F 1986 Methanol-Chemie und Energierohstoff (Heidelberg: Springer) pp1−9

    [3]

    Fakley M E, Jennings J R, Spencer M S 1989 J. Catal. 118 483Google Scholar

    [4]

    Abdulrasheed A, Jalil A A, Gambo Y, Ibrahim M, Hambali H U, Hamid M Y S 2019 Renewable Sustainable Energy Rev. 108 175Google Scholar

    [5]

    Jang W J, Shim J O, Kim H M, Yoo S Y, Roh H S 2019 Catal. Today 324 15Google Scholar

    [6]

    Aramouni N A K, Touma J G, Tarboush B A, Zeaiter J, Ahmad M N 2018 Renewable Sustainable Energy Rev. 82 2570Google Scholar

    [7]

    Wang Y, Yao L, Wang S, Mao D, Hu C 2018 Fuel Process. Technol. 169 199Google Scholar

    [8]

    Abdullah B, Ghani N A A, Vo D V N 2017 J. Cleaner Prod. 162 170Google Scholar

    [9]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC) pp19−342

    [10]

    Zhang X, Wenren Y, Zhou W, Han J, Lu H, Zhu Z, Wu Z, Cha M S 2020 J. Phys. D: Appl. Phys. 53 194002Google Scholar

    [11]

    Brune L, Ozkan A, Genty E, Bocarmé T V, Reniers F 2018 J. Phys. D: Appl. Phys. 51 234002Google Scholar

    [12]

    Maqueo P D G, Coulombe S, Bergthorson J M 2019 J. Phys. D: Appl. Phys. 52 274002Google Scholar

    [13]

    Alawi N M, Sunarso J, Pham G H, Barifcani A, Nguyen M H, Liu S 2020 J. Ind. Eng. Chem. 85 118Google Scholar

    [14]

    王晓玲, 高远, 张帅, 孙昊, 李杰, 邵涛 2019 电工技术学报 34 1329

    Wang X L, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Trans. Chin. Electrotechn. Soc. 34 1329

    [15]

    Wu A, Yan J, Zhang H, Zhang M, Du C, Li X 2014 Int. J. Hydrogen Energy 39 17656Google Scholar

    [16]

    Khoja A H, Tahir M, Amin N A S 2019 Energy Convers. Manage. 183 529Google Scholar

    [17]

    王建龙, 丁芳, 朱晓东 2015 物理学报 64 045206Google Scholar

    Wang J L, Ding F, Zhu X D 2015 Acta Phys. Sin. 64 045206Google Scholar

    [18]

    赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰 2018 物理学报 67 085202Google Scholar

    Zhao Y F, Wang C, Wang W Z, Li L, Sun H, Shao T, Pan J 2018 Acta Phys. Sin. 67 085202Google Scholar

    [19]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 1366Google Scholar

    [20]

    Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704Google Scholar

    [21]

    Snoeckx R, Aerts R, Tu X, Bogaerts A 2013 J. Phys. Chem. C 117 4957Google Scholar

    [22]

    Liu S, Winter L R, Chen J G 2020 ACS Catal. 10 2855Google Scholar

    [23]

    Bogaerts A, De Bie C, Snoecks R, Kozak T 2017 Plasma Processes Polym. 14 1600070Google Scholar

    [24]

    De Bie C, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331Google Scholar

    [25]

    Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204Google Scholar

    [26]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [27]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [28]

    Luo Y C, Lietz A M, Yatom S, Kushner M J, Bruggeman P J 2019 J. Phys. D: Appl. Phys. 52 044003Google Scholar

    [29]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar

    [30]

    Brown P N, Byrne G D, Hindmarsh A C 1989 SIAM J. Sci. Stat. Comput. 10 1038Google Scholar

    [31]

    Zhang S, Gao Y, Sun H, Bai H, Wang R X, Shao T 2018 J. Phys. D: Appl. Phys. 51 274005Google Scholar

    [32]

    Bai C J, Wang L J, Li L, Dong X, Xiao Q H, Liu Z Q, Sun J H, Pan J 2019 AIP Adv. 9 035023Google Scholar

  • 图 1  甲烷摩尔分数为10%, 30%, 50%, 70%和90%时的电子温度随时间演化规律

    Figure 1.  Electron temperature as a function of time for methane mole fractions of 10%, 30%, 50%, 70% and 90%.

    图 2  甲烷摩尔分数为10%, 30%, 50%, 70%和90%时的电子密度随时间变化趋势

    Figure 2.  Electron density as a function of time for methane mole fractions of 10%, 30%, 50%, 70% and 90%.

    图 3  (a) 10%, (b) 50%和(c) 90%甲烷摩尔分数时主要自由基的数密度随时间变化趋势, 以及(d) 主要自由基的周期平均值随甲烷摩尔分数的变化

    Figure 3.  The number densities of main radicals as a function of time for methane mole fractions of (a) 10%, (b) 50%, (c) 90%, and (d) time averaged number densities of main radicals as a function of initial CH4 fraction.

    图 4  (a) 10%, (b) 50%和(c) 90%甲烷摩尔分数时主要离子的数密度随时间的变化趋势, 以及(d)主要离子的周期平均值随甲烷摩尔分数的变化

    Figure 4.  The number densities of main ions as a function of time for methane mole fractions of (a) 10%, (b) 50%, (c) 90%, and (d) time averaged densities of main ions as a function of initial CH4 fraction.

    图 5  (a) 10%, (b) 50%和(c) 90%甲烷摩尔分数时主要分子数密度随时间的变化规律, 及(d)主要分子的周期平均值随甲烷摩尔分数的变化

    Figure 5.  The number densities of main molecules as a function of time for methane mole fractions of (a) 10%, (b) 50%, (c) 90%, and (d) time averaged densities of main molecules as a function of initial CH4 fraction.

    图 6  (a)进料气体的转化率和(b)合成气和重要含氧化合物的选择性随着甲烷摩尔分数的变化趋势

    Figure 6.  Time-averaged (a) conversion, (b) selectivity as a function of initial CH4 mole fraction.

    图 10  H2的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Figure 10.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of H2 as a function of methane mole fraction (a) 10%, (b) 50%, (c) 90%.

    图 8  CH3OH的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Figure 8.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of CH3OH as a function of methane mole fraction: (a) 10%, (b) 50%, (c) 90%.

    图 9  CO的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Figure 9.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of CO as a function of methane mole fraction (a) 10%, (b) 50%, (c) 90%.

    图 7  CH2O的主要生成和损耗反应的时间平均反应速率随甲烷摩尔分数的变化柱状图 (a) 10%, (b) 50%, (c) 90%

    Figure 7.  Time-averaged reaction rates of the dominant reaction pathways for the production and consumption of CH2O as a function of methane mole fraction: (a) 10%, (b) 50%, (c) 90%.

    图 11  CH4/CO2摩尔分数比为1:1的大气压非平衡等离子体DRM反应总体流程图. 箭头的粗细与时间平均的净反应速率成线性正比

    Figure 11.  Schematic overview of the dominant reaction pathways for the conversion of CH4 and CO2 into representative higher oxygenates and syngas in atmospheric non-equilibrium plasma for a 1:1 CH4/CO2 gas mixture. The thickness of the arrows is linearly proportional to time-averaged rate of net reaction.

  • [1]

    Gangadharan P, Kanchi K C, Lou H H 2012 Chem. Eng. Res. Des. 90 1956Google Scholar

    [2]

    Asinger F 1986 Methanol-Chemie und Energierohstoff (Heidelberg: Springer) pp1−9

    [3]

    Fakley M E, Jennings J R, Spencer M S 1989 J. Catal. 118 483Google Scholar

    [4]

    Abdulrasheed A, Jalil A A, Gambo Y, Ibrahim M, Hambali H U, Hamid M Y S 2019 Renewable Sustainable Energy Rev. 108 175Google Scholar

    [5]

    Jang W J, Shim J O, Kim H M, Yoo S Y, Roh H S 2019 Catal. Today 324 15Google Scholar

    [6]

    Aramouni N A K, Touma J G, Tarboush B A, Zeaiter J, Ahmad M N 2018 Renewable Sustainable Energy Rev. 82 2570Google Scholar

    [7]

    Wang Y, Yao L, Wang S, Mao D, Hu C 2018 Fuel Process. Technol. 169 199Google Scholar

    [8]

    Abdullah B, Ghani N A A, Vo D V N 2017 J. Cleaner Prod. 162 170Google Scholar

    [9]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC) pp19−342

    [10]

    Zhang X, Wenren Y, Zhou W, Han J, Lu H, Zhu Z, Wu Z, Cha M S 2020 J. Phys. D: Appl. Phys. 53 194002Google Scholar

    [11]

    Brune L, Ozkan A, Genty E, Bocarmé T V, Reniers F 2018 J. Phys. D: Appl. Phys. 51 234002Google Scholar

    [12]

    Maqueo P D G, Coulombe S, Bergthorson J M 2019 J. Phys. D: Appl. Phys. 52 274002Google Scholar

    [13]

    Alawi N M, Sunarso J, Pham G H, Barifcani A, Nguyen M H, Liu S 2020 J. Ind. Eng. Chem. 85 118Google Scholar

    [14]

    王晓玲, 高远, 张帅, 孙昊, 李杰, 邵涛 2019 电工技术学报 34 1329

    Wang X L, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Trans. Chin. Electrotechn. Soc. 34 1329

    [15]

    Wu A, Yan J, Zhang H, Zhang M, Du C, Li X 2014 Int. J. Hydrogen Energy 39 17656Google Scholar

    [16]

    Khoja A H, Tahir M, Amin N A S 2019 Energy Convers. Manage. 183 529Google Scholar

    [17]

    王建龙, 丁芳, 朱晓东 2015 物理学报 64 045206Google Scholar

    Wang J L, Ding F, Zhu X D 2015 Acta Phys. Sin. 64 045206Google Scholar

    [18]

    赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰 2018 物理学报 67 085202Google Scholar

    Zhao Y F, Wang C, Wang W Z, Li L, Sun H, Shao T, Pan J 2018 Acta Phys. Sin. 67 085202Google Scholar

    [19]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 1366Google Scholar

    [20]

    Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704Google Scholar

    [21]

    Snoeckx R, Aerts R, Tu X, Bogaerts A 2013 J. Phys. Chem. C 117 4957Google Scholar

    [22]

    Liu S, Winter L R, Chen J G 2020 ACS Catal. 10 2855Google Scholar

    [23]

    Bogaerts A, De Bie C, Snoecks R, Kozak T 2017 Plasma Processes Polym. 14 1600070Google Scholar

    [24]

    De Bie C, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331Google Scholar

    [25]

    Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204Google Scholar

    [26]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [27]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [28]

    Luo Y C, Lietz A M, Yatom S, Kushner M J, Bruggeman P J 2019 J. Phys. D: Appl. Phys. 52 044003Google Scholar

    [29]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar

    [30]

    Brown P N, Byrne G D, Hindmarsh A C 1989 SIAM J. Sci. Stat. Comput. 10 1038Google Scholar

    [31]

    Zhang S, Gao Y, Sun H, Bai H, Wang R X, Shao T 2018 J. Phys. D: Appl. Phys. 51 274005Google Scholar

    [32]

    Bai C J, Wang L J, Li L, Dong X, Xiao Q H, Liu Z Q, Sun J H, Pan J 2019 AIP Adv. 9 035023Google Scholar

  • [1] Zhou Xiong-Feng, Chen Bin, Liu Kun. Characteristics of atmospheric pressure AC argon discharge plasma jet. Acta Physica Sinica, 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [2] Peng Yi, Wang ChunJing, Li Jing, Gao KaiYue, Xu HanCheng, Chen ChuanJie, Qian MuYang, Dong BinYan, WangDeZhen. Numerical Simulation Study on the Mechanism of Plasma Dissociation of Carbon Dioxide in Atmospheric Pressure Packed-Bed Reactors. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241241
    [3] Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua. Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power. Acta Physica Sinica, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [4] Chen Ze-Yu, Peng Yu-Bin, Wang Rui, He Yong-Ning, Cui Wan-Zhao. Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity. Acta Physica Sinica, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [5] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [6] Yang Li-Jun, Song Cai-Hong, Zhao Na, Zhou Shuai, Wu Jia-Cun, Jia Peng-Ying. Discharge characteristics of argon brush plasma plume operated at atmospheric pressure. Acta Physica Sinica, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [7] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting. Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [8] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [9] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [10] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [11] Shi Lan-Fang, Ouyang Cheng, Chen Li-Hua, Mo Jia-Qi. Solving method of a class of reactive diffusion model for atmospheric plasmas. Acta Physica Sinica, 2012, 61(5): 050203. doi: 10.7498/aps.61.050203
    [12] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [13] Yu Liang, Li Xiao-Dong, Wang Yu, Ni Ming-Jiang, Yan Jian-Hua, Tu Xin. Characterization of atmospheric pressuredc gliding arc plasma. Acta Physica Sinica, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [14] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [15] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [16] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [17] Zhou Xiang, Zhang Xuan, Liu Ai-Fen, Zeng Xiang-Hua. Structure of FC(O)O2 and the mechanism of its reaction with NO. Acta Physica Sinica, 2010, 59(7): 5128-5134. doi: 10.7498/aps.59.5128
    [18] Wang Pei-Yi, Yang Chun, Li Lai-Cai, Li Yan-Rong. Theoretical study on the reaction mechanism of Sr,Ti,O reactions in early growth of SrTiO3 thin films. Acta Physica Sinica, 2008, 57(4): 2340-2346. doi: 10.7498/aps.57.2340
    [19] Zhao Jiang, Cui Lei, Zeng Xiang-Hua, Xu Xiu-Lian. Theoretical study on the reaction mechanism of the reaction of FC(O)O with NO. Acta Physica Sinica, 2008, 57(11): 7349-7353. doi: 10.7498/aps.57.7349
    [20] Yan Jian-Hua, Tu Xin, Ma Zeng-Yi, Pan Xin-Chao, Cen Ke-Fa, Cheron Bruno. Characterization of DC argon plasma jet at atmospheric pressure. Acta Physica Sinica, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
Metrics
  • Abstract views:  5904
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2020
  • Accepted Date:  25 December 2020
  • Available Online:  29 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回