-
Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H2 respectively.
-
Keywords:
- discharge plasma at atmospheric pressure /
- methane discharge plasma /
- needle-plane discharge /
- fluid model
[1] Liu C, Chernets I, Ji H, Smith J, Rabinovich A, Dobrynin D, Fridman A 2017 IEEE Trans. Plasma Sci. 45 683
[2] Kang H, Lee D, Kim K, Jo S, Pyun S, Song Y, Yu S 2016 Fuel Process. Technol. 148 209
[3] Bie C D, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331
[4] Xu Y, Zhang X, Yang C, Zhang Y, Yin Y 2016 Plasma Sci. Technol. 18 1012
[5] Wang C, Zhang Z, Cui H, Xia W, Xia W 2017 Chin. Phys. B 26 085207
[6] Liu J L, Park H W, Chung W J, Park D W 2016 Plasma Chem. Plasma Proc. 36 437
[7] Zhang Z B, Wu Y, Jia M, Song H M, Sun Z Z, Li Y H 2017 Chin. Phys. B 26 065204
[8] Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203
[9] Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203
[10] Zhang D Z, Wang Y H, Wang D Z 2017 Chin. Phys. B 26 065206
[11] Shao T, Wang R X, Zhang C, Yan P 2018 High Voltage 3 14
[12] Gao Y, Zhang S, Liu F, Wang R X, Wang T L, Shao T 2017 Trans. China Electrotechnical Soc. 32 61 (in Chinese)[高远, 张帅, 刘峰, 王瑞雪, 汪铁林, 邵涛 2017 电工技术学报 32 61]
[13] Snoeckx R, Setareh M, Aerts R, Simon P, Maghari A, Bogaerts A 2013 Int. J. Hydrogen Energy 38 16098
[14] Pan J, Li L 2015 J. Phys. D:Appl. Phys. 48 055204
[15] Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101]
[16] Pan J, Li L, Wang Y, Xiu X, Wang C, Song Y 2016 Plasma Sci. Technol. 18 1081
[17] Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Phys. Sin. 64 195204 (in Chinese)[牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 物理学报 64 195204]
[18] Pan J, Li L, Chen B, Song Y, Zhao Y, Xiu X 2016 Eur. Phys. J. D 70 136
[19] Babaeva N Y, Zhang C, Qiu J, Hou X, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008
[20] Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201 (in Chinese)[杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 物理学报 66 115201]
[21] Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese)[杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]
[22] Wang B, Yan W, Ge W, Duan X 2013 Chem. Eng. J. 234 354
[23] Levko D, Raja L L 2017 Plasma Sources Sci. Technol. 26 035003
[24] Yin Z Q, Wang Y, Zhang P P, Zhang Q, Li X C 2016 Chin. Phys. B 25 125203
[25] Wang Q, Yu X L, Wang D Z 2017 Chin. Phys. B 26 035201
[26] Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570
[27] Lefkowitz J K, Guo P, Rousso A, Ju Y 2015 Phil. Trans. R. Soc. 373 20140333
[28] Adamovich I V, Li T, Lempert W R 2015 Phil. Trans. R. Soc. 373 20140336
[29] Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001
[30] Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001
[31] Yao C W, Ma H C, Chang Z S, Li P, Mu H B, Zhang G J 2017 Acta Phys. Sin. 66 025203 (in Chinese)[姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军 2017 物理学报 66 025203]
-
[1] Liu C, Chernets I, Ji H, Smith J, Rabinovich A, Dobrynin D, Fridman A 2017 IEEE Trans. Plasma Sci. 45 683
[2] Kang H, Lee D, Kim K, Jo S, Pyun S, Song Y, Yu S 2016 Fuel Process. Technol. 148 209
[3] Bie C D, van Dijk J, Bogaerts A 2015 J. Phys. Chem. C 119 22331
[4] Xu Y, Zhang X, Yang C, Zhang Y, Yin Y 2016 Plasma Sci. Technol. 18 1012
[5] Wang C, Zhang Z, Cui H, Xia W, Xia W 2017 Chin. Phys. B 26 085207
[6] Liu J L, Park H W, Chung W J, Park D W 2016 Plasma Chem. Plasma Proc. 36 437
[7] Zhang Z B, Wu Y, Jia M, Song H M, Sun Z Z, Li Y H 2017 Chin. Phys. B 26 065204
[8] Wang W, Snoeckx R, Zhang X, Cha M S, Bogaerts A Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203
[9] Bi Z H, Hong Y, Lei G J, Wang S, Wang Y N, Liu D P 2017 Chin. Phys. B 26 075203
[10] Zhang D Z, Wang Y H, Wang D Z 2017 Chin. Phys. B 26 065206
[11] Shao T, Wang R X, Zhang C, Yan P 2018 High Voltage 3 14
[12] Gao Y, Zhang S, Liu F, Wang R X, Wang T L, Shao T 2017 Trans. China Electrotechnical Soc. 32 61 (in Chinese)[高远, 张帅, 刘峰, 王瑞雪, 汪铁林, 邵涛 2017 电工技术学报 32 61]
[13] Snoeckx R, Setareh M, Aerts R, Simon P, Maghari A, Bogaerts A 2013 Int. J. Hydrogen Energy 38 16098
[14] Pan J, Li L 2015 J. Phys. D:Appl. Phys. 48 055204
[15] Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101]
[16] Pan J, Li L, Wang Y, Xiu X, Wang C, Song Y 2016 Plasma Sci. Technol. 18 1081
[17] Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Phys. Sin. 64 195204 (in Chinese)[牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 物理学报 64 195204]
[18] Pan J, Li L, Chen B, Song Y, Zhao Y, Xiu X 2016 Eur. Phys. J. D 70 136
[19] Babaeva N Y, Zhang C, Qiu J, Hou X, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008
[20] Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201 (in Chinese)[杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 物理学报 66 115201]
[21] Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese)[杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]
[22] Wang B, Yan W, Ge W, Duan X 2013 Chem. Eng. J. 234 354
[23] Levko D, Raja L L 2017 Plasma Sources Sci. Technol. 26 035003
[24] Yin Z Q, Wang Y, Zhang P P, Zhang Q, Li X C 2016 Chin. Phys. B 25 125203
[25] Wang Q, Yu X L, Wang D Z 2017 Chin. Phys. B 26 035201
[26] Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570
[27] Lefkowitz J K, Guo P, Rousso A, Ju Y 2015 Phil. Trans. R. Soc. 373 20140333
[28] Adamovich I V, Li T, Lempert W R 2015 Phil. Trans. R. Soc. 373 20140336
[29] Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001
[30] Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001
[31] Yao C W, Ma H C, Chang Z S, Li P, Mu H B, Zhang G J 2017 Acta Phys. Sin. 66 025203 (in Chinese)[姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军 2017 物理学报 66 025203]
Catalog
Metrics
- Abstract views: 6964
- PDF Downloads: 234
- Cited By: 0