Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation on complex dynamics of hollow cathode discharge in argon

He Shou-Jie Zhou Jia Qu Yu-Xiao Zhang Bao-Ming Zhang Ya Li Qing

Citation:

Simulation on complex dynamics of hollow cathode discharge in argon

He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing
PDF
HTML
Get Citation
  • In this paper, the dynamics of hollow cathode discharge in argon is simulated by fluid model. In the numerical model considered are 31 reaction processes, including direct ground state ionization, ground state excitation, stepwise ionization, Penning ionization, de-excitation, two-body collision, three-body collision, radiation transition, elastic collision, and electron-ion recombination reaction. The electron density, Ar+ density, Ar4s, Ar4p, Ar3d particle density, electric potential and electric field intensity are calculated. At the same time, the contributions of different reaction mechanisms for the generation and consumption of electron, Ar4s and Ar4p are simulated. The results indicate that hollow cathode effect exists in the discharge, and the Ar4s density is much higher than electron density. The penning ionization 2Ar4s → Ar+ + Ar+ + e and stepwise ionization involving Ar4s make important contributions to the generation of new electrons and the balance of electron energy. In particular, the penning ionization reaction 2Ar4s → Ar2+ + e, which is generally ignored in previous simulation, also has an significant influence on electron generation. The spatial distribution of excited state argon atomic density is the result of the balance between the formation and consumption of various particles during discharge. Radiation reaction Ar4p → Ar4s + is the main source of Ar4s generation and the main way to consume Ar4p. Ar4s + e →Ar4p + e is the main way of Ar4s consumption and Ar4p production. The simulation results also show that the Ar4p density distribution can better reflect the optical characteristics in the hollow cathode discharge.
      Corresponding author: He Shou-Jie, heshouj@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205046, 51777051), the Science Foundation of Hebei Province, China (Grant No. A2016201025), and the Post-Graduate’s Innovation Fund Project of Hebei University, China (Grant No. hbu2019ss078).
    [1]

    欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673Google Scholar

    Ouyang J T, Zhang Y, Qin Y 2016 High Volt. Eng. 42 673Google Scholar

    [2]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasma 24 083506Google Scholar

    [3]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [4]

    Baguer N, Bogaerts A, Donko Z, Gijbels R, Sadeghi N 2005 J. Appl. Phys. 97 123305Google Scholar

    [5]

    Ferreira N P, Strauss J A, Human H G C 1982 Spectrochimica Acta Part B 37 273Google Scholar

    [6]

    Slevin P J, Harrison W W 1975 Appl. Spectrosc. Rev. 10 201Google Scholar

    [7]

    Roberto M, Smith H B, Verboncoeur J P 2003 IEEE Trans. Plasma- Sci. 31 1292Google Scholar

    [8]

    Wiese W L, Braulk J W, Danzmann K, Kock M 1989 Phys. Rev. A 39 2461Google Scholar

    [9]

    Miclea M, Kunze K, Heitmann U, Florek S, Franzke J, Niemax K 2005 J. Phys. D: Appl. Phys. 38 1709Google Scholar

    [10]

    Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, T Jahnke T, Niemax K, Schmidt-Böcking H 2002 Plasma Sources Sci. Technol. 11 476Google Scholar

    [11]

    张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 24 245205Google Scholar

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 24 245205Google Scholar

    [12]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [13]

    Eggarter E 1975 J. Chem. Phys. 62 833Google Scholar

    [14]

    Eduardo C M, Moisan M 2010 Spectrochimica Acta B 65 199Google Scholar

    [15]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668Google Scholar

    [16]

    Shon J W, Kushner M J 1994 J. Appl. Phys. 75 1883Google Scholar

    [17]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [18]

    Li Z, Zhao Z, Li X H 2012 Phys. Plasma 19 033510Google Scholar

    [19]

    Epstein I L, Gavrilovic M, Jovicevic S, Konjevic N, Lebedev Y A, Tatarinov A V 2014 Eur. Phys. J. D 68 334Google Scholar

    [20]

    Shkurenkov I A, Mankelevich Y A, Rakhimova T V 2009 Phys. Rev. E 79 046406Google Scholar

    [21]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Source Sci. Tech. 15 204Google Scholar

    [22]

    Annemie B, Renaat G, Wim G 1999 Jpn. J. Appl. Phys. 38 4404Google Scholar

    [23]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 物理学报 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [24]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 物理学报 66 055101Google Scholar

    He S J, Zhang Z, Zhao Xue N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [25]

    付洋洋, 罗海云, 邹晓兵, 王强, 王新新 2014 物理学报 63 095206Google Scholar

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014 Acta Phys. Sin. 63 095206Google Scholar

    [26]

    Fu Y Y, Verboncoeur J P, Christlieb A J, Wang X X 2017 Phys. Plasmas 24 083516Google Scholar

    [27]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452

    [28]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社)

    Xue X J, Zhu D C 1996 Physics of Gas Discharge (Shanghai: Fudan University Press) (in Chinese)

    [29]

    Fu Y Y, Krek J, Parsry G M, Verboncoeur J P 2018 Phys. Plasma 25 033505Google Scholar

    [30]

    Bogaerts A, Guenard R D, Smith B W 1997 Spectrochimica Acta Part B 52 219Google Scholar

    [31]

    Uzelac N I, Leis F 1992 Spectrochim. Acta B 47 877Google Scholar

    [32]

    Strauss J A, Ferreira N P, Human H G C 1982 Spectrochim Acta B 37 273

    [33]

    Bogaerts A, Gijbels R 1995 Phys. Rev. A 52 3743Google Scholar

    [34]

    Bánó G, Donkó Z 2012 Plasma Sources Sci. Technol. 21 035011Google Scholar

    [35]

    Bogaerts A, Gijbels R 2002 J. Appl. Phys. 92 6408Google Scholar

    [36]

    Kutasi K, Donkó Z 2000 J. Phys. D: Appl. Phys. 33 1081Google Scholar

    [37]

    Bogaerts A, Gijbels R, Vlcek J 1998 Spectrochimica Acta Part B 53 1517Google Scholar

  • 图 1  圆筒形空心阴极放电单元截面图

    Figure 1.  Schematic of cylindrical hollow cathode discharge.

    图 2  电势分布图

    Figure 2.  Distribution of electric potential.

    图 3  带电粒子密度分布图 (a) 电子; (b) Ar+

    Figure 3.  Distribution of charged particle density: (a) Electron; (b) Ar+.

    图 4  激发态原子密度分布图 (a) Ar4s; (b) Ar4p; (c) Ar3d

    Figure 4.  Distribution of excited state atoms: (a) Ar4s; (b) Ar4p; (c) Ar3d.

    图 5  不同电离速率分布图 (a) G1基态电离; (b) G7潘宁电离; (c) G10潘宁电离; (d) G5分步电离

    Figure 5.  Different ionization rates: (a) G1 ground state ionization; (b) G7 Penning ionization; (c) G10 Penning ionization; (d) G5 stepwise ionization

    图 6  不同电离速率一维径向分布图(x = 1.2 mm)

    Figure 6.  Radial distribution of different ionizations at x = 1.2 mm

    图 7  平均电子能量和电子密度一维径向分布图(x = 1.2 mm)

    Figure 7.  Radial distribution of averaged electron energy and electron density at x = 1.2 mm.

    图 8  氩原子Ar4s能级生成速率 (a) G2, 直接激发; (b) G20, 氩原子Ar4p能级辐射跃迁

    Figure 8.  Production rate of Ar4s: (a) G2, direct excitation; (b) G20, radiation transition from Ar4p.

    图 9  生成4s能级的径向分布图

    Figure 9.  Radial production rate of Ar4s.

    图 10  消耗Ar4s能级的反应速率 (a) G17, Ar4s + e → Ar3d + e; (b) G18, Ar4s + e → Ar4p + e

    Figure 10.  The Ar4s consuming rates of different reactions: (a) G17, Ar4s + e → Ar3d + e; (b) G18, Ar4s + e → Ar4p + e.

    图 11  消耗Ar4s能级的反应速率一维分布图

    Figure 11.  Radial distribution of the Ar4s consuming rates.

    图 12  激发态氩原子Ar4p生成速率 (a) G3, Ar + e → Ar4p + e; (b) G21, Ar3d → Ar4p

    Figure 12.  The Ar4p production rates of different reactions: (a) G3, Ar + e → Ar4p + e; (b) G21, Ar3d → Ar4p.

    图 13  Ar4p生成速率的径向分布图

    Figure 13.  Radial distribution of the production rates of Ar4p.

    图 14  消耗Ar4p能级的反应速率一维分布图

    Figure 14.  Radial distribution of the Ar4p consuming rates.

    表 1  放电反应类型

    Table 1.  Discharge reactions in the model.

    反应
    标号
    反应方程反应
    标号
    反应方程
    G1Ar + e → Ar+ + 2e[12]G17Ar4s + e → Ar3d + e[16]
    G2Ar + e → Ar4s + e[13]G18Ar4s + e → Ar4p + e[12]
    G3Ar + e → Ar4p + e[13]G19Ar4p + e → Ar4s + e[12]
    G4Ar + e → Ar3d + e[13]G20Ar4p → Ar4s + [17]
    G5Ar4s + e → Ar+ + 2e[14]G21Ar3d → Ar4p[16]
    G6Ar4p + e → Ar+ + 2e[14]G22Ar+ + 2e → Ar + e[14]
    G72Ar4s → Ar+ + Ar + e[15]G23Ar+ + e → Ar4s[12]
    G82Ar4p → Ar+ + Ar + e[16]G24Ar+ + 2e → Ar4s + e[12]
    G92Ar4s → Ar2+ + e[17]G25Ar2+ + e → 2Ar[19]
    G10Ar4s + Ar → 2Ar[18]G26Ar2+ + e → Ar+ + Ar + e[20]
    G11Ar4s + 2Ar → 3Ar[18]G27Ar2+ + e → Ar4s + Ar[16]
    G122Ar + Ar+ → Ar2+ + Arr[16]G28Ar2+ + e → 2Ar4s[21]
    G13Ar4s + 2Ar → Ar2 + Ar[15]G29Ar2+ + e → Ar4p + Ar[16]
    G14Ar4s + e → Ar + e[12]G30Ar2+ + e → Ar3d + Ar[16]
    G15Ar4s → Ar +[12]G31Ar + e → Ar + e[22]
    G16Ar4p +e → Ar + e[12]
    DownLoad: CSV

    表 2  不同电离反应速率的平均值

    Table 2.  Average values of the different ionization rates in the discharge region.

    反应标号反应方程速率平均值/cm–3·s–1
    G1Ar + e → Ar+ + 2e2.5 × 1017
    G5Ar4s + e → Ar+ + 2e2.6 × 1016
    G6Ar4p + e → Ar+ + 2e1.1 × 1015
    G72Ar4s → Ar+ + Ar + e3.9 × 1016
    G82Ar4p → Ar+ + Ar + e2.9 × 1012
    G102Ar4s → Ar2+ + e3.8 × 1016
    DownLoad: CSV

    表 3  Ar4s生成速率平均值

    Table 3.  Average values of the different production rates of Ar4s in the discharge region.

    反应标号反应方程源项平均值/cm–3·s–1
    G2Ar + e → Ar4s + e1.6 × 1017
    G19Ar4p + e → Ar4s + e9.1 × 1015
    G20Ar4p → Ar4s + 11.8 × 1017
    G24Ar+ + 2e → Ar4s + e55.3
    G23Ar + e → Ar4s4.4 × 1012
    G27Ar2+ + e → Ar4s + Ar4.3 × 1015
    G28Ar2+ + e → 2Ar4s3.9 × 1014
    DownLoad: CSV

    表 4  消耗Ar4s的不同反应速率的平均值

    Table 4.  Average values of the different consuming rates of Ar4s in the discharge region.

    反应标号反应方程源项平均值/cm–3·s–1
    G5Ar4s + e → Ar+ + 2e2.6 × 1016
    G72Ar4s → Ar+ +Ar + e7.9 × 1016
    G9Ar4s + Ar → 2Ar3.0 × 1015
    G102Ar4s → Ar2+ + e7.6 × 1016
    G11Ar4s + 2Ar → 3Ar4.5 × 1015
    G13Ar4s + 2Ar → Ar2 + Ar3.5 × 1016
    G14Ar4s + e → Ar + e1.2 × 1015
    G15Ar4s → Ar + 1.9 × 1017
    G17Ar4s + e → Ar3d + e1.2 × 1017
    G18Ar4s + e → Ar4p + e8.2 × 1017
    DownLoad: CSV

    表 5  Ar4p生成速率平均值

    Table 5.  Average values of the different production rates of Ar4p in the discharge region.

    反应标号反应方程源项平均值/cm–3·s–1
    G3Ar + e → Ar4p + e2.2 × 1017
    G18Ar4s + e → Ar4p + e8.2 × 1017
    G21Ar3d → Ar4p1.4 × 1017
    G29Ar2+ + e → Ar4p + Ar4.3 × 1014
    DownLoad: CSV

    表 6  消耗Ar4p的不同反应速率的平均值

    Table 6.  Average values of the different consuming rates of Ar4p in the discharge region

    反应标号反应方程源项平均值/cm–3·s–1
    G6Ar4p + e→Ar+ + 2e1.1 × 1015
    G82Ar4p→Ar+ + Ar + e5.8 × 1012
    G16Ar4p +e→Ar + e1.3 × 1013
    G19Ar4p + e→Ar4s + e9.1 × 1015
    G20Ar4p→Ar4s + 11.8 × 1017
    DownLoad: CSV
  • [1]

    欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673Google Scholar

    Ouyang J T, Zhang Y, Qin Y 2016 High Volt. Eng. 42 673Google Scholar

    [2]

    Hou X Y, Fu Y Y, Wang H, Zou X B, Luo H Y, Wang X X 2017 Phys. Plasma 24 083506Google Scholar

    [3]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [4]

    Baguer N, Bogaerts A, Donko Z, Gijbels R, Sadeghi N 2005 J. Appl. Phys. 97 123305Google Scholar

    [5]

    Ferreira N P, Strauss J A, Human H G C 1982 Spectrochimica Acta Part B 37 273Google Scholar

    [6]

    Slevin P J, Harrison W W 1975 Appl. Spectrosc. Rev. 10 201Google Scholar

    [7]

    Roberto M, Smith H B, Verboncoeur J P 2003 IEEE Trans. Plasma- Sci. 31 1292Google Scholar

    [8]

    Wiese W L, Braulk J W, Danzmann K, Kock M 1989 Phys. Rev. A 39 2461Google Scholar

    [9]

    Miclea M, Kunze K, Heitmann U, Florek S, Franzke J, Niemax K 2005 J. Phys. D: Appl. Phys. 38 1709Google Scholar

    [10]

    Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, T Jahnke T, Niemax K, Schmidt-Böcking H 2002 Plasma Sources Sci. Technol. 11 476Google Scholar

    [11]

    张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 24 245205Google Scholar

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 24 245205Google Scholar

    [12]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [13]

    Eggarter E 1975 J. Chem. Phys. 62 833Google Scholar

    [14]

    Eduardo C M, Moisan M 2010 Spectrochimica Acta B 65 199Google Scholar

    [15]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668Google Scholar

    [16]

    Shon J W, Kushner M J 1994 J. Appl. Phys. 75 1883Google Scholar

    [17]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [18]

    Li Z, Zhao Z, Li X H 2012 Phys. Plasma 19 033510Google Scholar

    [19]

    Epstein I L, Gavrilovic M, Jovicevic S, Konjevic N, Lebedev Y A, Tatarinov A V 2014 Eur. Phys. J. D 68 334Google Scholar

    [20]

    Shkurenkov I A, Mankelevich Y A, Rakhimova T V 2009 Phys. Rev. E 79 046406Google Scholar

    [21]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Source Sci. Tech. 15 204Google Scholar

    [22]

    Annemie B, Renaat G, Wim G 1999 Jpn. J. Appl. Phys. 38 4404Google Scholar

    [23]

    夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强 2011 物理学报 60 015201Google Scholar

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201Google Scholar

    [24]

    何寿杰, 张钊, 赵雪娜, 李庆 2017 物理学报 66 055101Google Scholar

    He S J, Zhang Z, Zhao Xue N, Li Q 2017 Acta Phys. Sin. 66 055101Google Scholar

    [25]

    付洋洋, 罗海云, 邹晓兵, 王强, 王新新 2014 物理学报 63 095206Google Scholar

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014 Acta Phys. Sin. 63 095206Google Scholar

    [26]

    Fu Y Y, Verboncoeur J P, Christlieb A J, Wang X X 2017 Phys. Plasmas 24 083516Google Scholar

    [27]

    Hagelaar G J, Hoog F J, Kroesen G M 2000 Phys. Rev. E 62 1452

    [28]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社)

    Xue X J, Zhu D C 1996 Physics of Gas Discharge (Shanghai: Fudan University Press) (in Chinese)

    [29]

    Fu Y Y, Krek J, Parsry G M, Verboncoeur J P 2018 Phys. Plasma 25 033505Google Scholar

    [30]

    Bogaerts A, Guenard R D, Smith B W 1997 Spectrochimica Acta Part B 52 219Google Scholar

    [31]

    Uzelac N I, Leis F 1992 Spectrochim. Acta B 47 877Google Scholar

    [32]

    Strauss J A, Ferreira N P, Human H G C 1982 Spectrochim Acta B 37 273

    [33]

    Bogaerts A, Gijbels R 1995 Phys. Rev. A 52 3743Google Scholar

    [34]

    Bánó G, Donkó Z 2012 Plasma Sources Sci. Technol. 21 035011Google Scholar

    [35]

    Bogaerts A, Gijbels R 2002 J. Appl. Phys. 92 6408Google Scholar

    [36]

    Kutasi K, Donkó Z 2000 J. Phys. D: Appl. Phys. 33 1081Google Scholar

    [37]

    Bogaerts A, Gijbels R, Vlcek J 1998 Spectrochimica Acta Part B 53 1517Google Scholar

  • [1] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [2] Qi Bing, Tian Xiao, Wang Jing, Wang Yi-Shan, Si Jin-Hai, Tang Jie. One-dimensional simulation of Ar dielectric barrier discharge driven by combined rf/dc sources at atmospheric pressure. Acta Physica Sinica, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [3] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [4] Wang Qian, Zhao Jiang-Shan, Fan Yuan-Yuan, Guo Xin, Zhou Yi. Analysis of ArF excimer laser system discharge characteristics in different buffer gases. Acta Physica Sinica, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [5] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] Zhang Si-Qi, Lu Jing-Bin, Liu Xiao-Jing, Liu Ji-Ping, Li Hong, Liang Yu, Zhang Xiao-Ru, Liu Han, Wu Xiang-Yao, Guo Yi-Qing. Control of evolutionary atomic system of excited atom by using ideal photonic band-gap model. Acta Physica Sinica, 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [7] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [8] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [9] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [10] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [11] Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [12] He Shou-Jie, Ha Jing, Liu Zhi-Qiang, Ouyang Ji-Ting, He Feng. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms. Acta Physica Sinica, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [13] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [14] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [15] Shi Yun-Long, Yang Ya-Ping, Liu Hai-Lian, Huang Xian-Shan. Control of the evolution of an excited atom by using the dynamic Lorentzian reservior. Acta Physica Sinica, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [16] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [17] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [18] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [19] Yu Jian-Hua, Lai Jian-Jun, Huang Jian-Jun, Wang Xin-Bin, Qui Jun-Lin. . Acta Physica Sinica, 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [20] LAI JIAN-JUN, YU JIAN-HUA, HUANG JIAN-JUN, WANG XIN-BING, QIU JUN-LIN. SELF-CONSISTENT DESCRIPTION OF A DC HOLLOW CATHODE DISCHARGE AND ANALYSIS OF CATHODE SPUTTERING. Acta Physica Sinica, 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
Metrics
  • Abstract views:  8939
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2019
  • Accepted Date:  03 August 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回