-
Diffuse discharges generated under fast nanosecond-pulse rising edges possess a larger discharge radius compared to classic streamer discharges. However, existing simulation studies often employ boundary ranges similar to those used for simulating streamer discharges, thereby neglecting the influence of the boundary range on their characteristics. This study investigates the characteristics of diffuse discharges in atmospheric-pressure air using a fluid model. The research focuses on the influence of plasma and Poisson equation boundary ranges on discharge evolution, particularly the top and right boundaries of the rectangular computational domain. Numerical simulations and experimental comparisons reveal several key findings: When both plasma and Poisson equation boundaries are set to 5cm×5cm (exceeding six times the maximum discharge radius), the simulated discharge width and propagation velocity agree well with experimental measurements. However, a consistent delay is observed in the simulated arrival time at the plate electrode, highlighting inherent limitations of current fluid models in accurately simulating temporal scales. Reducing the plasma boundaries results in negligible fluctuations in electric field intensity and electron density at the discharge head, indicating a minimal impact on macroscopic discharge characteristics. Narrowing the Poisson equation’s right boundary significantly reduces the discharge width while simultaneously increasing the discharge width relative to the domain size. Asymmetric propagation patterns emerge between the upper and lower halves of the discharge gap. Nevertheless, appropriate reduction of the right boundary improves morphological consistency with experimental observations, suggesting practical optimization strategies. Conversely, reducing the top boundary weakens the electric field “focusing effect” at the discharge head, homogenizes the spatial field distribution, and delays acceleration, thereby exacerbating deviations from experimental data. These results demonstrate that Poisson boundary conditions critically govern spatiotemporal discharge dynamics. Top boundary truncation severely compromises simulation accuracy, whereas adjusting the right boundary allows for a balanced optimization between computational efficiency and result reliability. This work provides theoretical guidance for selecting boundary conditions in the numerical modeling of diffuse discharges.
-
Keywords:
- Nanosecond pulsed diffuse discharge /
- Fluid model /
- Streamer discharge /
- Boundary conditions
-
[1] Chng T L, Pai D Z, Guaitella O, Starikovskaia S M, Bourdon A 2022Plasma Sources Science & Technology 31 015010
[2] Brisset A, Guenin T, Tardiveau P, Sobota A 2023Plasma Sources Science & Technology 32 065014
[3] Babaeva N Y, Naidis G V 2016Physics of Plasmas 23 083527
[4] Nijdam S, Teunissen J, Ebert U 2020Plasma Sources Science & Technology 29 103001
[5] Marode E, Dessante P, Tardiveau P 2016Plasma Sources Science & Technology 25 064004
[6] Tardiveau P, Moreau N, Bentaleb S, Postel C, Pasquiers S 2009Journal of Physics D-Applied Physics 42 175202
[7] Babaeva N Y, Naidis G V, Tereshonok D V, Son E E 2018Journal of Physics D-Applied Physics 51 434002
[8] Bourdon A, Péchereau F, Tholin F, Bonaventura Z 2021Journal of Physics D-Applied Physics 54 075204
[9] Bourdon A, Péchereau F, Tholin F, Bonaventura Z 2021Plasma Sources Science & Technology 30 105022
[10] Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021Plasma Sources Science & Technology 30 075025
[11] Brisset A, Gazeli K, Magne L, Pasquiers S, Jeanney P, Marode E, Tardiveau P 2019Plasma Sources Science & Technology 28 055016
[12] Guo Y L, Li Y R, Zhu Y F, Sun A B 2023Plasma Sources Science & Technology 32 025003
[13] Grubert G K, Becker M M, Loffhagen D 2009Physical Review E 80 036405
[14] Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007Plasma Sources Science & Technology 16 656
[15] Pancheshnyi S 2015Plasma Sources Science & Technology 24 015023
[16] Phelps A V, Pitchford L C 1985Physical Review A 31 2932
[17] Lawton S A, Phelps A V 1978The Journal of Chemical Physics 69 1055
[18] Pancheshnyi S 2013Journal of Physics D-Applied Physics 46 155201
[19] Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992Plasma Sources Science & Technology 1 207
[20] Pancheshnyi S, Nudnova M, Starikovskii A 2005Physical Review E 71 016407
[21] Li X R, Dijcks S, Nijdam S, Sun A B, Ebert U, Teunissen J 2021Plasma Sources Science & Technology 30 095002
[22] Li X R, Guo B H, Sun A B, Ebert U, Teunissen J 2022Plasma Sources Science & Technology 31 065011
[23] Guo B H, Li X R, Ebert U, Teunissen J 2022Plasma Sources Science & Technology 31 095011
[24] Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018Acta Physica Sinica 67 045101(in Chinese) [李晗蔚,孙安邦,姚聪伟,常正实,张冠军2018物理学报67 045101]
[25] Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022Plasma Sources Science & Technology 31 045027
[26] Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014Acta Physica Sinica 63 085208(in Chinese) [章程,马浩,邵涛,谢庆,杨文晋,严萍2014物理学报63 085208]
[27] Shao T, Tarasenko V F, Yang W J, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014Chinese Physics Letters 31 085201
Metrics
- Abstract views: 44
- PDF Downloads: 0
- Cited By: 0