-
Diffuse discharges generated under fast nanosecond-pulse rising edges possess a larger discharge radius compared to classic streamer discharges. However, existing simulation studies often employ boundary ranges similar to those used for simulating streamer discharges, thereby neglecting the influence of the boundary range on their characteristics. This study investigates the characteristics of diffuse discharges in atmospheric-pressure air using a fluid model. The research focuses on the influence of plasma and Poisson equation boundary ranges on discharge evolution, particularly the top and right boundaries of the rectangular computational domain. Numerical simulations and experimental comparisons reveal several key findings: When both plasma and Poisson equation boundaries are set to 5 cm×5 cm (exceeding six times the maximum discharge radius), the simulated discharge width and propagation velocity agree well with experimental measurements. However, a consistent delay is observed in the simulated arrival time at the plate electrode, highlighting inherent limitations of current fluid models in accurately simulating temporal scales. Reducing the plasma boundaries results in negligible fluctuations in electric field intensity and electron density at the discharge head, indicating a minimal impact on macroscopic discharge characteristics. Narrowing the Poisson equation’s right boundary significantly reduces the discharge width while simultaneously increasing the discharge width relative to the domain size. Asymmetric propagation patterns emerge between the upper and lower halves of the discharge gap. Nevertheless, appropriate reduction of the right boundary improves morphological consistency with experimental observations, suggesting practical optimization strategies. Conversely, reducing the top boundary weakens the electric field “focusing effect” at the discharge head, homogenizes the spatial field distribution, and delays acceleration, thereby exacerbating deviations from experimental data. These results demonstrate that Poisson boundary conditions critically govern spatiotemporal discharge dynamics. Top boundary truncation severely compromises simulation accuracy, whereas adjusting the right boundary allows for a balanced optimization between computational efficiency and result reliability. This work provides theoretical guidance for selecting boundary conditions in the numerical modeling of diffuse discharges.
-
Keywords:
- nanosecond pulsed diffuse discharge /
- fluid model /
- streamer discharge /
- boundary conditions
-
图 1 仿真中采用的电极结构和计算域示意图, 图中边界范围大小的数值仅作为结构示意, 在下文中针对其进行修改以研究仿真结果变化规律
Figure 1. Schematic diagram of the electrode structure and computational domain used in the simulation, the numerical values for the boundary extent shown in the figure are purely for schematic illustration. These values will be systematically modified in the subsequent sections to investigate the trends in simulation results.
表 1 仿真中所采用的等离子体边界条件
Table 1. Plasma boundary conditions used in the simulation.
通量方向 电子 正离子 负离子 电子能量 阳极向外 0 $ \nabla n = 0 $ 0 0 阳极向内 $ \nabla n = 0 $ 0 $ \nabla n = 0 $ $ \varGamma = {\varGamma _{\text{e}}}{n_{{\varepsilon }}} $ 阴极向外 $ \nabla n = 0 $ 0 $ \nabla n = 0 $ $ \varGamma = {\varGamma _{\text{e}}}{n_{{\varepsilon }}} $ 阴极向内 0 $ \nabla n = 0 $ 0 0 表 2 仿真中所采用的反应体系
Table 2. Reaction system used in simulation.
反应 反应速率 参考文献 R1 e+N2$ \to {\text{N}}_{2}^{+} $+e+e f(σ, ε) [16] R2 e+O2$ \to {\text{O}}_{2}^{+} $+e+e f(σ, ε) [17] R3 e+O2+O2$ \to {\text{O}}_{2}^{-} $+O2 f(ε) [17] R4 e+O2$ \to $O–+O f(ε) [17] R5 $ {\text{O}}_{2}^{-} $+M $ \to $e+ O2+M f(ε) [18] R6 O–+ N2$ \to $e+N2O f(ε) [18] R7 O–+ O2$ \to {\text{O}}_{2}^{-} $+O2 f(ε) [18] R8 O–+ O2+M $ \to {\text{O}}_{3}^{-} $+M f(ε) [18] R9 $ {\text{N}}_{2}^{+} $+N2+M $ \to {\text{N}}_{4}^{+} $+M 5×10–29×
(300/Tgas)2[19] R10 $ {\text{O}}_{2}^{+} $+ O2+M $ \to {\text{O}}_{4}^{+} $+ M 2.4×10–30×
(300/Tgas)3[19] R11 $ {\text{N}}_{4}^{+} $+ O2$ \to {\text{O}}_{2}^{+} $+N2+N2 2.5×10–10 [19] R12 e+$ {\text{O}}_{4}^{+}\to $O2+ O2 1.4×10–6×
(300/Tgas)0.5[19] R13 e+$ {\text{N}}_{4}^{+}\to $N2+N2 2×10–6×
(300/Tgas)0.5[19] R14 e+N2$ \to $e+ N2(C3Πu) f(ε) [16] R15 N2(C3Πu) $ \to $N2+hv 2.38×107 [20] R16 $ {\text{N}}_{2}^{+} $+ O–$ \to $N+N+O 10–7 [19] R17 $ {\text{N}}_{2}^{+} $+$ {\text{O}}_{2}^{-}\to $N+N+ O2 10–7 [19] R18 $ {\text{N}}_{2}^{+} $+$ {\text{O}}_{3}^{-}\to $N+N+ O3 10–7 [19] R19 $ {\text{O}}_{2}^{+} $+ O–$ \to $O+O+O 10–7 [19] R20 $ {\text{O}}_{2}^{+} $+$ {\text{O}}_{2}^{-}\to $O+O+ O2 10–7 [19] R21 $ {\text{O}}_{2}^{+} $+$ {\text{O}}_{3}^{-}\to $O+O+ O3 10–7 [19] R22 $ {\text{O}}_{4}^{+} $+ O–$ \to $O2+ O2+O 10–7 [19] R23 $ {\text{O}}_{4}^{+} $+$ {\text{O}}_{2}^{-}\to $O2+ O2+ O2 10–7 [19] R24 $ {\text{O}}_{4}^{+} $+$ {\text{O}}_{3}^{-}\to $O2+ O2+ O3 10–7 [19] R25 $ {\text{N}}_{4}^{+} $+ O–$ \to $N2+N2+O 10–7 [19] R26 $ {\text{N}}_{4}^{+} $+$ {\text{O}}_{2}^{-}\to $N2+N2+ O2 10–7 [19] R27 $ {\text{N}}_{4}^{+} $+$ {\text{O}}_{3}^{-}\to $N2+N2+ O3 10–7 [19] -
[1] Chng T L, Pai D Z, Guaitella O, Starikovskaia S M, Bourdon A 2022 Plasma Sources Sci. Techn. 31 015010
Google Scholar
[2] Brisset A, Guenin T, Tardiveau P, Sobota A 2023 Plasma Sources Sci. Techn. 32 065014
Google Scholar
[3] Babaeva N Y, Naidis G V 2016 Phys. Plasmas 23 083527
Google Scholar
[4] Nijdam S, Teunissen J, Ebert U 2020 Plasma Sources Sci. Techn. 29 103001
Google Scholar
[5] Marode E, Dessante P, Tardiveau P 2016 Plasma Sources Sci. Techn. 25 064004
Google Scholar
[6] Tardiveau P, Moreau N, Bentaleb S, Postel C, Pasquiers S 2009 J. Phys. D Appl. Phys. 42 175202
Google Scholar
[7] Babaeva N Y, Naidis G V, Tereshonok D V, Son E E 2018 J. Phys. D Appl. Phys. 51 434002
Google Scholar
[8] Bourdon A, Péchereau F, Tholin F, Bonaventura Z 2021 J. Phys. D Appl. Phys. 54 075204
Google Scholar
[9] Bourdon A, Péchereau F, Tholin F, Bonaventura Z 2021 Plasma Sources Sci. Techn. 30 105022
Google Scholar
[10] Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Techn. 30 075025
Google Scholar
[11] Brisset A, Gazeli K, Magne L, Pasquiers S, Jeanney P, Marode E, Tardiveau P 2019 Plasma Sources Sci. Techn. 28 055016
Google Scholar
[12] Guo Y L, Li Y R, Zhu Y F, Sun A B 2023 Plasma Sources Scie. Techn. 32 025003
Google Scholar
[13] Grubert G K, Becker M M, Loffhagen D 2009 Phys. Rev. E 80 036405
Google Scholar
[14] Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Techn. 16 656
Google Scholar
[15] Pancheshnyi S 2015 Plasma Sources Sci. Techn. 24 015023
[16] Phelps A V, Pitchford L C 1985 Phys. Rev. A 31 2932
Google Scholar
[17] Lawton S A, Phelps A V 1978 J. Chem. Phys. 69 1055
Google Scholar
[18] Pancheshnyi S 2013 J. Phys. D Appl. Phys. 46 155201
Google Scholar
[19] Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Techn. 1 207
Google Scholar
[20] Pancheshnyi S, Nudnova M, Starikovskii A 2005 Phys. Rev. E 71 016407
Google Scholar
[21] Li X R, Dijcks S, Nijdam S, Sun A B, Ebert U, Teunissen J 2021 Plasma Sources Sci. Techn. 30 095002
Google Scholar
[22] Li X R, Guo B H, Sun A B, Ebert U, Teunissen J 2022 Plasma Sources Science & Technology 31 065011
[23] Guo B H, Li X R, Ebert U, Teunissen J 2022 Plasma Sources Sci. Techn. 31 095011
Google Scholar
[24] 李晗蔚, 孙安邦, 姚聪伟, 常正实, 张冠军 2018 物理学报 67 045101
Google Scholar
Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin. 67 045101
Google Scholar
[25] Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022 Plasma Sources Sci. Techn. 31 045027
Google Scholar
[26] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 63 085208
Google Scholar
Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014 Acta Phys. Sin. 63 085208
Google Scholar
[27] Shao T, Tarasenko V F, Yang W J, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Chin. Phys. Lett. 31 085201
Google Scholar
Metrics
- Abstract views: 315
- PDF Downloads: 8
- Cited By: 0