-
Amorphous silica (a-SiO2), with excellent insulating properties, uniform disordered structure and good thermal stability, is the preferred material for field oxide layers, gate insulation layers and passivation layers in numerous semiconductor devices. However, in space environments, oxygen vacancies resulted from high-energy particle radiation and their interactions with hydrogen atoms in a-SiO2 could lead to enhanced low-dose-rate sensitivity, potentially causing threshold voltage shifts and leakage current increases in semiconductor devices. These seriously threaten the operation safety of spacecraft, and the exploration of related reaction mechanisms is crucial. A first-principles calculation is employed to investigate the neutral oxygen vacancies in amorphous silica and their reaction mechanisms with hydrogen atoms. Five types of neutral oxygen vacancies are identified, namely VD, VB, VF, VBP4 and VDSi configurations. A significant positive correlation is observed between the defect formation energy and the distance between two defect silicon atoms. The VD configuration may become the major defect type in irradiation or fabrication due to the lowest defect formation energy. VF and VB configurations display comparable Fermi contacts to those of Eγ′ centers. The presence of electron pairs leads to zero fermi contacts in VD, VBP4 and VDSi configurations. To reactions between oxygen vacancies and hydrogen atoms, the previous investigations often pay more attention to the reactions with hydrogen atoms at the middle-sites of oxygen vacancies. And, a critical characteristic of the disordered a-SiO2 structure is neglected by this approach: the reactions may extend into the neighboring network and occur at side-sites of oxygen defects. For a full understanding of actual reactions, both the middle-sites and side-sites are considered for hydrogen atoms in present investigations. It’s revealed that hydrogen atoms passivate neutral oxygen vacancies through two distinct mechanisms: Si-H bond formation or silanol group generation. These processes yield two classes of neutral hydrogenated oxygen vacancies, VH and VOH configurations, which can be further classified into seven distinct configurations based on the orientation of dangling bonds and Si-H bonds. By combining the analyses of ELF maps and EPR simulations, it is demonstrated that VBB H and VBM H configurations have comparable EPR parameters to those of Eγ′ center, implying that hydrogen passivation processes may interfere with the identification of E′ center. The formation of silanol group in VBB OH configuration provides theoretical bases for explaining water molecules formation within oxide layers and at interfaces. This study elucidates the hydrogen-induced crossnetwork migration and silanol group formation pathway, collectively revealing the dual role of hydrogen in passivating defects and inducing secondary defects. A microscopic explanation is derived from these findings for the enhanced low dose rate sensitivity in bipolar devices.
-
Keywords:
- Neutral oxygen vacancy /
- hydrogen atom /
- passivation /
- first-principles
-
[1] Kajihara K, Miura T, Kamioka H, Aiba A, Uramoto M, Morimoto Y, Hirano M, Skuja L, Hosono H 2008 Journal of Non-Crystalline Solids 354224
[2] Füssel W, Schmidt M, Flietner H 1992 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 65238
[3] Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472289
[4] Yue Y, Wang J, Zhang Y, Song Y, Zuo X 2018 Physica B: Condensed Matter 5335
[5] Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Pantelides S T 2015 IEEE Transactions on Nuclear Science 622169
[6] Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Transactions on Nuclear Science 381342
[7] Pershenkov V S, Petrov A S, Bakerenkov A S, Ulimov V N, Felytsyn V A, Rodin A S, Belyakov V V, Telets V A, Shurenkov V V 2017 Microelectronics Reliability 76-77703
[8] Zhou H, Song Y, Liu Y, Zhang Y 2020 Eur. Phys. J. Plus 135909
[9] Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Transactions on Nuclear Science 553009
[10] Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Transactions on Nuclear Science 501901
[11] Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Transactions on Nuclear Science 492650
[12] Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D, Galloway K F 1998 IEEE Transactions on Nuclear Science 452339
[13] Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Transactions on Nuclear Science 411871
[14] Messina F, Cannas M 2007 J. Phys. Chem. C 1116663
[15] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Transactions on Nuclear Science 553169
[16] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Transactions on Nuclear Science 541913
[17] Morana A, Cannas M, Girard S, Boukenter A, Vaccaro L, Périsse J, Macé J R, Ouerdane Y, Boscaino R 2013 Opt. Mater. Express, OME 31769
[18] Tomashuk A L, Zabezhailov M O 2011 Journal of Applied Physics 109083103
[19] Saito K, Ito M, Ikushima A J, Funahashi S, Imamura K 2004 Journal of Non-Crystalline Solids 347289
[20] Weeks R A 1956 Journal of Applied Physics 271376
[21] Nelson C M, Weeks R A 1960 Journal of the American Ceramic Society 43396
[22] Weeks R A, Nelson C M 1960 Journal of the American Ceramic Society 43399
[23] Griscom D L 1984 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1481
[24] Griscom D L 1985 MRS Online Proceedings Library (OPL) 61213
[25] Boero M, Oshiyama A, Silvestrelli P L 2004 Mod. Phys. Lett. B 18707
[26] Boero M, Oshiyama A, Silvestrelli P L 2003 Phys. Rev. Lett. 91206401
[27] Wang Y, Zhao Y, Chen Z, Jia Z, Tong D, Nie S, Han Z 2024 The Journal of Chemical Physics 161034705
[28] Yue Y, Song Y, Zuo X 2017 AIP Advances 7015309
[29] Chavez J R, Karna S P, Vanheusden K, Brothers C P, Pugh R D, Singaraju B K, Warren W L, Devine R A B 1997 IEEE Transactions on Nuclear Science 441799
[30] Mukhopadhyay S, Sushko P V, Mashkov V A, Shluger A L 2005 J. Phys.: Condens. Matter 171311
[31] Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 3812772
[32] Blöchl P E 2000 Phys. Rev. B 626158
[33] Skuja L 1998 Journal of Non-Crystalline Solids 23916
[34] Pantelides S T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472262
[35] Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472289
[36] McLean F B 1980 IEEE Transactions on Nuclear Science 271651
[37] Saks N S, Klein R B, Griscom D L 1988 IEEE Transactions on Nuclear Science 351234
[38] El-Sayed A M, Wimmer Y, Goes W, Grasser T, Afanas’ev V V, Shluger A L 2015 Phys. Rev. B 92014107
[39] El-Sayed A M, Watkins M B, Grasser T, Afanas’ev V V, Shluger A L 2015 Microelectronic Engineering 147141
[40] Rivera A, van Veen A, Schut H, de Nijs J M M, Balk P 2002 Solid-State Electronics 461775
[41] Kato K 2012 Phys. Rev. B 85085307
[42] Yao P, Song Y, Zuo X 2021 Superlattices and Microstructures 156106962
[43] Hong Z C, Yao P, Liu Y, Zuo X 2022 Chinese Phys. B 31057101
[44] VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J 2005 Computer Physics Communications 167103
[45] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865
[46] VandeVondele J, Hutter J 2007 J. Chem. Phys. 127114105
[47] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 541703
[48] BROYDEN C G 1970 IMA Journal of Applied Mathematics 6222
[49] Fletcher R 1970 The Computer Journal 13317
[50] Goldfarb D 1970 Math. Comp. 2423
[51] Shanno D F 1970 Math. Comp. 24647
[52] Henkelman G, Uberuaga B P, Jónsson H 2000 The Journal of Chemical Physics 1139901
[53] Becke A D, Edgecombe K E 1990 The Journal of Chemical Physics 925397
[54] Lu T, Chen F W 2011 Acta Phys. -Chem. Sin. 272786(in Chinese) [卢天, 陈飞武2011物理化学学报272786]
[55] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86253
[56] Pickard C J, Mauri F 2002 Phys. Rev. Lett. 88086403
[57] Yazyev O V, Tavernelli I, Helm L, Röthlisberger U 2005 Phys. Rev. B 71115110
[58] Bahramy M S, Sluiter M H F, Kawazoe Y 2007 Phys. Rev. B 76035124
[59] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21395502
[60] Charpentier T 2011 Solid State Nuclear Magnetic Resonance 401
[61] Pickard C J, Mauri F 2001 Phys. Rev. B 63245101
[62] Le Roux S, Petkov V 2010 J Appl Cryst 43181
[63] Goetzke K, Klein H J 1991 Journal of Non-Crystalline Solids 127215
[64] Yuan X, Cormack A N 2002 Computational Materials Science 24343
[65] Van Ginhoven R M, Jónsson H, Corrales L R 2005 Phys. Rev. B 71024208
[66] Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70195203
[67] Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Richard N 2014 Phys. Rev. B 90014108
[68] Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M, Schrimpf R D 2007 Microelectronics Reliability 47903
Metrics
- Abstract views: 126
- PDF Downloads: 4
- Cited By: 0