Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanisms of Hydrogen Passivation and Reaction Pathways for Neutral Oxygen Vacancies in Amorphous Silica

WANG Yuqi ZHAO Yaolin Yu Chenxi ZHANG Jun

Citation:

Mechanisms of Hydrogen Passivation and Reaction Pathways for Neutral Oxygen Vacancies in Amorphous Silica

WANG Yuqi, ZHAO Yaolin, Yu Chenxi, ZHANG Jun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Amorphous silica (a-SiO2), with excellent insulating properties, uniform disordered structure and good thermal stability, is the preferred material for field oxide layers, gate insulation layers and passivation layers in numerous semiconductor devices. However, in space environments, oxygen vacancies resulted from high-energy particle radiation and their interactions with hydrogen atoms in a-SiO2 could lead to enhanced low-dose-rate sensitivity, potentially causing threshold voltage shifts and leakage current increases in semiconductor devices. These seriously threaten the operation safety of spacecraft, and the exploration of related reaction mechanisms is crucial. A first-principles calculation is employed to investigate the neutral oxygen vacancies in amorphous silica and their reaction mechanisms with hydrogen atoms. Five types of neutral oxygen vacancies are identified, namely VD, VB, VF, VBP4 and VDSi configurations. A significant positive correlation is observed between the defect formation energy and the distance between two defect silicon atoms. The VD configuration may become the major defect type in irradiation or fabrication due to the lowest defect formation energy. VF and VB configurations display comparable Fermi contacts to those of Eγ′ centers. The presence of electron pairs leads to zero fermi contacts in VD, VBP4 and VDSi configurations. To reactions between oxygen vacancies and hydrogen atoms, the previous investigations often pay more attention to the reactions with hydrogen atoms at the middle-sites of oxygen vacancies. And, a critical characteristic of the disordered a-SiO2 structure is neglected by this approach: the reactions may extend into the neighboring network and occur at side-sites of oxygen defects. For a full understanding of actual reactions, both the middle-sites and side-sites are considered for hydrogen atoms in present investigations. It’s revealed that hydrogen atoms passivate neutral oxygen vacancies through two distinct mechanisms: Si-H bond formation or silanol group generation. These processes yield two classes of neutral hydrogenated oxygen vacancies, VH and VOH configurations, which can be further classified into seven distinct configurations based on the orientation of dangling bonds and Si-H bonds. By combining the analyses of ELF maps and EPR simulations, it is demonstrated that VBB H and VBM H configurations have comparable EPR parameters to those of Eγ′ center, implying that hydrogen passivation processes may interfere with the identification of E′ center. The formation of silanol group in VBB OH configuration provides theoretical bases for explaining water molecules formation within oxide layers and at interfaces. This study elucidates the hydrogen-induced crossnetwork migration and silanol group formation pathway, collectively revealing the dual role of hydrogen in passivating defects and inducing secondary defects. A microscopic explanation is derived from these findings for the enhanced low dose rate sensitivity in bipolar devices.
  • [1]

    Kajihara K, Miura T, Kamioka H, Aiba A, Uramoto M, Morimoto Y, Hirano M, Skuja L, Hosono H 2008 Journal of Non-Crystalline Solids 354224

    [2]

    Füssel W, Schmidt M, Flietner H 1992 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 65238

    [3]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472289

    [4]

    Yue Y, Wang J, Zhang Y, Song Y, Zuo X 2018 Physica B: Condensed Matter 5335

    [5]

    Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Pantelides S T 2015 IEEE Transactions on Nuclear Science 622169

    [6]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Transactions on Nuclear Science 381342

    [7]

    Pershenkov V S, Petrov A S, Bakerenkov A S, Ulimov V N, Felytsyn V A, Rodin A S, Belyakov V V, Telets V A, Shurenkov V V 2017 Microelectronics Reliability 76-77703

    [8]

    Zhou H, Song Y, Liu Y, Zhang Y 2020 Eur. Phys. J. Plus 135909

    [9]

    Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Transactions on Nuclear Science 553009

    [10]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Transactions on Nuclear Science 501901

    [11]

    Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Transactions on Nuclear Science 492650

    [12]

    Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D, Galloway K F 1998 IEEE Transactions on Nuclear Science 452339

    [13]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Transactions on Nuclear Science 411871

    [14]

    Messina F, Cannas M 2007 J. Phys. Chem. C 1116663

    [15]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Transactions on Nuclear Science 553169

    [16]

    Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Transactions on Nuclear Science 541913

    [17]

    Morana A, Cannas M, Girard S, Boukenter A, Vaccaro L, Périsse J, Macé J R, Ouerdane Y, Boscaino R 2013 Opt. Mater. Express, OME 31769

    [18]

    Tomashuk A L, Zabezhailov M O 2011 Journal of Applied Physics 109083103

    [19]

    Saito K, Ito M, Ikushima A J, Funahashi S, Imamura K 2004 Journal of Non-Crystalline Solids 347289

    [20]

    Weeks R A 1956 Journal of Applied Physics 271376

    [21]

    Nelson C M, Weeks R A 1960 Journal of the American Ceramic Society 43396

    [22]

    Weeks R A, Nelson C M 1960 Journal of the American Ceramic Society 43399

    [23]

    Griscom D L 1984 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1481

    [24]

    Griscom D L 1985 MRS Online Proceedings Library (OPL) 61213

    [25]

    Boero M, Oshiyama A, Silvestrelli P L 2004 Mod. Phys. Lett. B 18707

    [26]

    Boero M, Oshiyama A, Silvestrelli P L 2003 Phys. Rev. Lett. 91206401

    [27]

    Wang Y, Zhao Y, Chen Z, Jia Z, Tong D, Nie S, Han Z 2024 The Journal of Chemical Physics 161034705

    [28]

    Yue Y, Song Y, Zuo X 2017 AIP Advances 7015309

    [29]

    Chavez J R, Karna S P, Vanheusden K, Brothers C P, Pugh R D, Singaraju B K, Warren W L, Devine R A B 1997 IEEE Transactions on Nuclear Science 441799

    [30]

    Mukhopadhyay S, Sushko P V, Mashkov V A, Shluger A L 2005 J. Phys.: Condens. Matter 171311

    [31]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 3812772

    [32]

    Blöchl P E 2000 Phys. Rev. B 626158

    [33]

    Skuja L 1998 Journal of Non-Crystalline Solids 23916

    [34]

    Pantelides S T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472262

    [35]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472289

    [36]

    McLean F B 1980 IEEE Transactions on Nuclear Science 271651

    [37]

    Saks N S, Klein R B, Griscom D L 1988 IEEE Transactions on Nuclear Science 351234

    [38]

    El-Sayed A M, Wimmer Y, Goes W, Grasser T, Afanas’ev V V, Shluger A L 2015 Phys. Rev. B 92014107

    [39]

    El-Sayed A M, Watkins M B, Grasser T, Afanas’ev V V, Shluger A L 2015 Microelectronic Engineering 147141

    [40]

    Rivera A, van Veen A, Schut H, de Nijs J M M, Balk P 2002 Solid-State Electronics 461775

    [41]

    Kato K 2012 Phys. Rev. B 85085307

    [42]

    Yao P, Song Y, Zuo X 2021 Superlattices and Microstructures 156106962

    [43]

    Hong Z C, Yao P, Liu Y, Zuo X 2022 Chinese Phys. B 31057101

    [44]

    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J 2005 Computer Physics Communications 167103

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865

    [46]

    VandeVondele J, Hutter J 2007 J. Chem. Phys. 127114105

    [47]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 541703

    [48]

    BROYDEN C G 1970 IMA Journal of Applied Mathematics 6222

    [49]

    Fletcher R 1970 The Computer Journal 13317

    [50]

    Goldfarb D 1970 Math. Comp. 2423

    [51]

    Shanno D F 1970 Math. Comp. 24647

    [52]

    Henkelman G, Uberuaga B P, Jónsson H 2000 The Journal of Chemical Physics 1139901

    [53]

    Becke A D, Edgecombe K E 1990 The Journal of Chemical Physics 925397

    [54]

    Lu T, Chen F W 2011 Acta Phys. -Chem. Sin. 272786(in Chinese) [卢天, 陈飞武2011物理化学学报272786]

    [55]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86253

    [56]

    Pickard C J, Mauri F 2002 Phys. Rev. Lett. 88086403

    [57]

    Yazyev O V, Tavernelli I, Helm L, Röthlisberger U 2005 Phys. Rev. B 71115110

    [58]

    Bahramy M S, Sluiter M H F, Kawazoe Y 2007 Phys. Rev. B 76035124

    [59]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21395502

    [60]

    Charpentier T 2011 Solid State Nuclear Magnetic Resonance 401

    [61]

    Pickard C J, Mauri F 2001 Phys. Rev. B 63245101

    [62]

    Le Roux S, Petkov V 2010 J Appl Cryst 43181

    [63]

    Goetzke K, Klein H J 1991 Journal of Non-Crystalline Solids 127215

    [64]

    Yuan X, Cormack A N 2002 Computational Materials Science 24343

    [65]

    Van Ginhoven R M, Jónsson H, Corrales L R 2005 Phys. Rev. B 71024208

    [66]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70195203

    [67]

    Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Richard N 2014 Phys. Rev. B 90014108

    [68]

    Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M, Schrimpf R D 2007 Microelectronics Reliability 47903

  • [1] CHEN Suqi, HE Feng. Fano resonance in high-order harmonics of hydrogen atoms driven by intense laser pulse. Acta Physica Sinica, doi: 10.7498/aps.74.20250617
    [2] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, doi: 10.7498/aps.69.20201231
    [3] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, doi: 10.7498/aps.67.20180626
    [4] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, doi: 10.7498/aps.66.067202
    [5] Yang Liang, Wang Cai-Zhuang, Lin Shi-Wei, Cao Yang. First-principles investigation of oxygen diffusion mechanism in -titanium crystals. Acta Physica Sinica, doi: 10.7498/aps.66.116601
    [6] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, doi: 10.7498/aps.66.216801
    [7] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, doi: 10.7498/aps.64.026602
    [8] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, doi: 10.7498/aps.64.013101
    [9] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, doi: 10.7498/aps.63.207301
    [10] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, doi: 10.7498/aps.62.206102
    [11] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, doi: 10.7498/aps.62.127301
    [12] Li Yu-Bo, Wang Xiao, Dai Ting-Ge, Yuan Guang-Zhong, Yang Hang-Sheng. First-principle study of vacancy-induced cubic boron nitride electronic structure and optical propertiy changes. Acta Physica Sinica, doi: 10.7498/aps.62.074201
    [13] Lu Jin-Lian, Cao Jue-Xian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen. Acta Physica Sinica, doi: 10.7498/aps.61.148801
    [14] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, doi: 10.7498/aps.61.047101
    [15] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, doi: 10.7498/aps.59.4170
    [16] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, doi: 10.7498/aps.58.4853
    [17] Yang Chong, Yang Chun. First-principles study of atomic and electronic structures of the silicon oxide clusters on Si(001) surfaces. Acta Physica Sinica, doi: 10.7498/aps.58.5362
    [18] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, doi: 10.7498/aps.55.6042
    [19] Kang Shuai, Liu Qiang, Zhong Zhen-Xiang, Zhang Xian-Zhou, Shi Ting-Yun. Calculation of diamagnetic spectrum of Rydberg hydrogen atom using B-spline basis sets. Acta Physica Sinica, doi: 10.7498/aps.55.3380
    [20] Li Xing-Hua, Yang Ya-Tian. Boson expression of hydrogen atom eigenfunction. Acta Physica Sinica, doi: 10.7498/aps.54.12
Metrics
  • Abstract views:  126
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  08 August 2025
  • /

    返回文章
    返回